Responsive image
博碩士論文 etd-0616108-125342 詳細資訊
Title page for etd-0616108-125342
論文名稱
Title
一個以獨特位元模式為基礎來支援圖像資料庫系統中圖像旋轉與翻轉之索引技術
A Unique-Bit-Pattern-Based Indexing Strategy for Image Rotation and Reflection in Image Databases
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-05-02
繳交日期
Date of Submission
2008-06-16
關鍵字
Keywords
相似度擷取、圖像的翻轉與旋轉、影像資料庫、物件索引
similarity retrieval, iconic indexing, image rotation and reflection, image databases
統計
Statistics
本論文已被瀏覽 5708 次,被下載 1216
The thesis/dissertation has been browsed 5708 times, has been downloaded 1216 times.
中文摘要
一個影像資料庫儲存了大量的影像資料與相關的資訊,這些影像資料與資訊是由真實的影像圖片與相對應的符號圖片所組成。影像資料庫系統的相似程度擷取的應用當中,空間關係是一個相當重要的參考因素。為了能夠從影像資料庫中尋找出有興趣的資料,必須有能力推論組成圖片的物件彼此之間的空間關係。隨著數位相機和影像處理軟體的普及,許多的影像資料可以輕易地旋轉或翻轉。也就是說,這些影像可以被旋轉到特定的角度、水平翻轉或垂直翻轉。一個穩固的影像相似擷取架構,可以辨識出各種影像轉換,例如:變形、放大縮小、旋轉、或任意的轉換組合。目前已發表的空間相似擷取演算法可以歸納成三種類型:符號圖像投射類型、幾何空間類型、與圖學技術比對類型。符號圖像投射可以保留物件中與空間有關的重要資訊,例如:長度、寬度、以及座落位置。然而,許\\多以符號圖像投射為主的物件索引技術對於圖像的翻轉與旋轉相當敏感。因此,以空間關係搜尋圖像時,如果指定的空間關係方位和資料庫中儲存不一致,搜尋的結果會遺漏符合條件的影像。為了解決這個問題,學者們整理出影像轉換後,空間關係變化的規則。並提供一組條件式,將空間關係對應到轉變後的結果。然而,這組條件式由一系列的條件判斷所組成,導致運算沒有效率。在這本博士論文中,首先,我們將上述的條件式分成三種類型。根據這樣的分類,細心地為每一個空間關係指定一個16位元長度的位元字串。這樣的對應,可以將空間關係的轉換根據我們提出的位元運算—intra-exchange—來完成。此位元運算的時間複雜度為O(1)的CPU運算時間。除此之外,我們設計了一個物件索引技術來儲存物件之間的空間關係。此索引技術稱為Unique Bit Pattern Matrix。處理影像相似擷取時,我們不需要從索引中推導出原來的影像,再透過旋轉或翻轉此影像來獲得相對應的索引。然後根據推導出來的索引做相似度比對。相反地,透過位元運算和矩陣運算,我們的索引技術可以直接推導出影像旋轉或翻轉之後相對應的索引。透過推導出的索引來做相似度比對,可以保證我們設計的索引機制不會遺漏符合使用者條件的影像。在效能評估中,首先分析我們設計的索引機制在進行相似度擷取的時間複雜度。接著,我們呈現透過模擬測試效能的結果。結果顯示,我們的索引機制的效能表現,遠比以條件式為主的索引機制還要優異。依據影像中所包含的物件個數的不同,效能的提升介於13.64% 和53.23% 之間。
Abstract
A symbolic image database system is a system in which a large amount of image data and their related information are represented by both symbolic images and physical images. Spatial relationships are important issues for similarity-based retrieval in many image database applications. How to perceive spatial relationships among the components in a symbolic image is an important criterion to find a match between the symbolic image of the scene object and the one being store as a modal in the symbolic image database. With the popularity of digital cameras and the related image processing software, a sequence of images are often rotated or flipped. That is, those images are transformed in the rotation orientation or the reflection direction. A robust spatial similarity framework should be able to recognize image variants such as translation, scaling, rotation, and arbitrary variants. Current retrieval by spatial similarity algorithms can be classified into symbolic projection methods, geometric methods, and graph-matching methods. Symbolic projection could preserve the useful spatial information of objects, such as width, height, and location. However, many iconic indexing strategies based on symbolic projection are sensitive to rotation or reflection. Therefore, these strategies may miss the qualified images, when the query is issued in the orientation different from the orientation of the database images. To solve this problem, researchers derived the rule of the change of spatial relationships in image transformation, and proposed a function to map the spatial relationship to its related transformed one. However, this mapping consists of several conditional statements, which is time-consuming. Thus, in this dissertation, first, we classify the mapping into three cases and carefully assign a 16-bit unique bit pattern to each spatial relationship. Based on the assignment, we can easily do the mapping through our proposed bit operation, intra-exchange, which is a CPU operation and needs only the complexity of O(1). Moreover, we propose an efficient iconic index strategy, called Unique
Bit Pattern matrix strategy (UBP matrix strategy) to record the
spatial information. In this way, when doing similarity retrieval, we do not need to reconstruct the original image from the UBP matrix in order to obtain the indexes of the rotated and flipped image. Conversely, we can directly derive the index of the rotated or flipped image from the index of the original one through bit operations and the matrix manipulation. Thus, our proposed strategy can do similarity retrieval without missing the qualified database images. In our performance study, first, we analyze the time
complexity of the similarity retrieval process of our proposed strategy. Then, the efficiency of our proposed strategy according to the simulation results is presented. We show that our strategy outperforms those mapping strategies based on different number of objects in an image. According to the different number of objects in an image, the percentage of improvement is between 13.64% and 53.23%.
目次 Table of Contents
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Image Content Descriptor . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Spatial Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Retrieval by Spatial Similarity . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Iconic Indexing Based on Symbolic Projection . . . . . . . . . . . . . 11
1.5 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . 18
2. A Survey of Iconic Indexing Strategies . . . . . . . . . . . . . . . . 19
2.1 2D Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 2D C-Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 2D B-Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 2D Projection Interval Relationships . . . . . . . . . . . . . . . . . . 28
2.5 Zhou and Ang's DT Approach . . . . . . . . . . . . . . . . . . . . . . 34
2.6 An Unique-ID-Based Matrix Strategy . . . . . . . . . . . . . . . . . . 39
2.7 Virtual Images for Similarity Retrieval . . . . . . . . . . . . . . . . . 43
2.8 2D Z-string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9 9D-SPA Representation for Spatial Relationships . . . . . . . . . . . 47
2.10 9DLT Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.11 Triangular Spatial Relationship . . . . . . . . . . . . . . . . . . . . . 53
2.12 Archival and Retrieval Based on The B-Tree Structure . . . . . . . . 54
2.13 Archival and Retrieval Based on Statistic Measurements . . . . . . . 56
2.14 A Logarithmic Search Time Strategy for Exact Match Retrieval . . . 58
3. The Unique Bit Pattern Matrix Strategy . . . . . . . . . . . . . . . 61
3.1 Rules of Image Rotation and Re
ection . . . . . . . . . . . . . . . . . 61
3.2 The Matrix Manipulation and the Proposed Bit Operation . . . . . . 66
3.3 Unique Bit Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Spatial Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 The Unique Bit Pattern Matrix . . . . . . . . . . . . . . . . . . . . . 73
3.6 Deriving Indices of The Rotated and Flipped Images . . . . . . . . . 76
3.7 Similarity Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4. Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Future Research Direction . . . . . . . . . . . . . . . . . . . . . . . . 99
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
參考文獻 References
[1] J. F. Allen, “Maintaining Knowledge about Temporal Intervals,” Comm. of the ACM, Vol. 26, No. 11, pp. 832-843, Nov. 1983.
[2] S. K. Bhatia and C. L. Sabharwal, “A Fast Implementation of a Perfect Hash Function for Picture Objects,” Pettern Recognition, Vol. 27, No. 3, pp. 365-376, March 1994.
[3] A. Blaser, Database Techniques for Pictorial Applications, Lecture Notes in Computer Science, Vol. 81. Springer Verlag GmbH, 1979.
[4] H. Burkhardt and S. Siggelkow, Nonlinear Model-Based Image Video Processsing and Analysis, ch. Invariant Features for Discriminating Between Equivalence Classes. John Wiley and Sons, 2000.
[5] A. E. Cawkill, “The British Library's Picture Research Projects: Image, Word, and Retrieval,” Advanced Imaging, Vol. 8, No. 10, pp. 38-40, Oct. 1993.
[6] C. C. Chang, “Spatial Match Retrieval of Symbolic Pictures,” Journal of Information Science and Engineering, Vol. 7, No. 3, pp. 405-422, Sept. 1991.
[7] C. C. Chang and C. F. Lee, “Relative Coordinates Oriented Symbolic String for Spatial Relationship Retrieval,” Pattern Recognition, Vol. 28, No. 4, pp. 563-570, April 1995.
[8] C. C. Chang and C. F. Lee, “A Spatial Match Retrieval Mechanism for Symbolic Pictures,” The Journal of Systems and Software, Vol. 44, No. 1, pp. 73-83, Dec. 1998.
[9] C. C. Chang and S. Y. Lee, “Retrieval of Similar Pictures on Pictorial Databases,” Pattern Recognition, Vol. 24, No. 7, pp. 675-680, July 1991.
[10] C. C. Chang and D. C. Lin, “A Spatial Data Representation: An Adaptive 2D-H String,” Pattern Recognition Letters, Vol. 17, No. 2, pp. 175-185, Feb. 1996.
[11] N. S. Chang and K. S. Fu, “A Relational Database System for Images,” Technical Report TR-EE, pp. 79-82, May 1797.
[12] N. S. Chang and K. S. Fu, “Query by Pictorial Example,” IEEE Trans. on Knowledge and Data Engineering, Vol. 6, No. 6, pp. 519-524, Nov. 1980.
[13] S. K. Chang and A. Hsu, “Image Information Systems: Where Do We Go from Here?,” IEEE Trans. on Knowledge and Data Engineering, Vol. 5, No. 5, pp. 431-442, Oct. 1992.
[14] S. K. Chang and E. Jungert, “Pictorial Data Management Based upon The Theory of Symbolic Projection,” Journal of Visual Language and Computing, Vol. 2, No. 3, pp. 195-215, Sept. 1991.
[15] S. K. Chang and E. Jungert, Symbolic Projection for Image Information Retrieval and Spatial Reasoning. London, U.K.: Academic Press, April 1996.
[16] S. K. Chang, E. Jungert, and Y. Li, “Representation and Retrieval of Symbolic Pictures Using Generated 2D Strings,” Proc. of Visual Communications and Image Processing, pp. 1360-1372, 1989.
[17] S. K. Chang, E. Jungert, and G. Tortora, Intelligent Image Database Systems. Singapore: World Scientic Press, July 1996.
[18] S. K. Chang and T. L. Kunii, “Pictorial Database Systems,” IEEE Computer Magazine, Vol. 14, No. 11, pp. 13-21, Nov. 1981.
[19] S. K. Chang and Y. Li, “Representation of Multi-Resolution Symbolic and Binary Pictures Using 2D-H Strings,” Proc. IEEE Workshop on Languages for Automata, pp. 190-195, 1988.
[20] S. K. Chang, Q. Y. Shi, and C. W. Yan, “Iconic Indexing by 2D Strings,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 9, No. 3, pp. 413-428, May 1987.
[21] S. K. Chang, C. W. Yan, D. C. Dimitro , and T. Arndt, “An Intelligent Image Database System,” IEEE Trans. on Software Engineering, Vol. 14, No. 5, pp. 681-688, May 1988.
[22] Y. I. Chang and H. Y. Ann, “A Note on Adaptive 2D-H Strings,” Pattern Recognition Letters, Vol. 20, No. 1, pp. 15-20, Jan. 1999.
[23] Y. I. Chang, H. Y. Ann, and W. H. Yeh, “A Unique-ID-Based Matrix Strategy for Effcient Iconic Indexing of Symbolic Pictures,” Pattern Recognition, Vol. 33, No. 8, pp. 1263-1276, Aug. 2000.
[24] Y. I. Chang and B. Y. Yang, “A Prime-Number-Based Matrix Strategy for Efficient Iconic Indexing of Symbolic Pictures,” Pattern Recognition, Vol. 30, No. 10, pp. 1745-1757, Oct. 1997.
[25] Y. I. Chang, B. Y. Yang, and W. H. Yeh, “A Generalized Prime-Number-Based Matrix Strategy for Efficient Iconic Indexing of Symbolic Pictures,” Pattern Recognition Letters, Vol. 22, No. 6, pp. 657-666, May 2001.
[26] Y. I. Chang, B. Y. Yang, and W. H. Yeh, “A Bit-Pattern-Based Matrix Strategy for Efficient Iconic Indexing of Symbolic Pictures,” Pattern Recognition Letters, Vol. 24, No. 1-3, pp. 537-545, Jan. 2003.
[27] Y. Chen, J. Z. Wang, and R. Krovetz, “An Unsupervised Learning Approach to Content-Based Image Retrieval,” Proc. of the IEEE Int. Symp. on Signal Processing and Its Applications, pp. 197-200, July 2003.
[28] J. Dowe, “Content-Based Retrieval in Multimedia Imaging,” Proc. SPIE Storage and Retrieval for Image and Video Database, 1993.
[29] J. Eakins and M. Graham, “Content-Based Image Retrieval,” tech. rep., University of Northumbria at Newcastle, 1999.
[30] M. J. Egenhofer, “Point-Set Topological Spatial Relations,” Int. Journal of Geographical Information Systems, Vol. 5, No. 2, pp. 161-174, 1991.
[31] M. J. Egenhofer and R. D. Franzasa, “On The Equivalence of Topological Relations,” Journal of Geographic Information Systems, Vol. 9, No. 2, pp. 133-152,1995.
[32] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz, “Efficient and Effective Querying by Image Content,” Journal of Intelligent Information Systems, Vol. 3, No. 3-4, pp. 231-262, July 1994.
[33] J. B. Fraleigh and R. A. Beauregard, Linear Algebra. Addison Wesley, third ed.,
1995.
[34] B. Furht, S. W. Smoliar, and H. J. Zhang, Video and Image Processing in Multimedia Systems. Kluwer Academic, 1995.
[35] Y. Gong, H. J. Zhang, and T. C. Chua, “An Image Database System with Content Capturing and Fast Image Indexing Abilities,” Proc. IEEE Int. Conf. on Multimedia Computing and Sytems, pp. 121-130, May 1994.
[36] V. N. Gudivada, “On Spatial Similarity Measures for Multimedia Applications,” Proc. of SPIE Storage and Retrieval for Still Images and Video Databases III, pp. 363-372, 1995.
[37] V. N. Gudivada, “ R-String: A Geometry-Based Representation for Efficient and Effective Retrieval of Images by Spatial Similarity,” IEEE Trans. on Knowledgeand Data Engineering, Vol. 10, No. 3, pp. 504-512, May 1998.
[38] V. N. Gudivada and G. S. Jung, “An Algorithm for Content-Based Retrieval in Multimedia Databases,” Proc. of the Int. Conf. on Multimedia Computing and Systems, pp. 90-97, 1995.
[39] V. N. Gudivada and V. V. Raghavan, “Design and Evaluation of Algorithms for Image Retrievals by Spatial Similarity,” ACM Trans. on Information Systems, Vol. 13, No. 2, pp. 115-144, April 1995.
[40] A. Gupta and R. Jain, “Visual Information Retrieval,” Comm. of the ACM, Vol. 40, No. 5, pp. 70-79, 1997.
[41] D. S. Guru and P. Nagabhushan, “Triangular Spatial Relationship: A New Approach for Spatial Knowledge Representation,” Pattern Recognition Letters, Vol. 22, No. 9, pp. 999-1006, July 2001.
[42] D. S. Guru and P. Punitha, “An Invariant Scheme for Exact Match Retrieval of Symbolic Images Based Upon Principal Component Analysis,” Pattern Recognition Letters, Vol. 25, No. 1, pp. 73-86, Jan. 2004.
[43] D. S. Guru, P. Punitha, and P. Nagabhushan, “Archival And Retrieval of Symbolic Images: An Invariant Scheme Based on Triangular Spatial Relationship,” Pattern Recognition Letters, Vol. 24, No. 14, pp. 2397-2408, Oct. 2003.
[44] D. S. Guru, H. J. Raghavendra, and M. G. Suraj, “An Adaptive Binary Search Based Sorting by Insertion: An Efficient and Simple Algorithm,” Statistics and Applications, Vol. 2, pp. 85-96, 2000.
[45] T. Y. Hou, P. Lui, and M. Y. Chui, “A Content-Based Indexing Technique Using Relative Geometry Features,” Proc. of SPIE The Int. Society for Optical Engineering, Vol. 1662, 1992.
[46] F. J. Hsu and S. Y. Lee, “Similarity Retrieval by 2D C-Trees Matching in Image Databases,” Journal of Visual Communication and Image Representation, Vol. 9, No. 1, pp. 87-100, March 1998.
[47] F. J. Hsu, S. Y. Lee, and B. S. Lin, “2D C-Tree Spatial Representation for IconicImage,” Journal of Visual Languages and Computing, Vol. 10, No. 2, pp. 147-164, April 1999.
[48] P. W. Huang and Y. R. Jean, “Using 2D C+-String as Spatial Knowledge Representation for Image Database Systems,” Pattern Recognition, Vol. 27, No. 9, pp. 1249-1257, Sept. 1994.
[49] P. W. Huang and C. H. Lee, “Image Database Design Based on 9D-SPA Representation for Spatial Relations,” IEEE Trans. on Knowledge and Data Engineering, Vol. 16, No. 12, pp. 1486-1496, Dec. 2004.
[50] R. Jain, ed., Proc. US NSF Workshop Visual Information Management Systems, 1992.
[51] E. Jungert, “Extended Symbolic Projections as a Knowledge Structure for Spatial Reasoning,” Proc. of the 4th Int. Conf. on Pattern Recognition, Vol. 301,pp. 343-351, 1988.
[52] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotaion Invariant Spherical Harmonic Representation of 3D Shape Descriptions,” Proc. of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 156-164, 2003.
[53] A. J. T. Lee and H. P. Chiu, “2D Z-String: A New Spatial Knowledge Representation for Image Databases,” Pattern Recognition Letters, Vol. 24, No. 16, pp. 3015-3026, Dec. 2003.
[54] S. Y. Lee and F. J. Hsu, “2D C-String: A New Spatial Knowledge Representation for Image Database Systems,” Pattern Recognition, Vol. 23, No. 10, pp. 1077-1087, Oct. 1990.
[55] S. Y. Lee and F. J. Hsu, “Picture Algebra for Spatial Reasoning of Iconic Images Represented in 2D C-String,” Pattern Recognition Letters, Vol. 12, No. 7, pp. 425-435, July 1991.
[56] S. Y. Lee and F. J. Hsu, “Spatial Reasoning and Similarity Retrieval of Images Using 2D C-String Knowledge Representation,” Pattern Recognition, Vol. 25, No. 3, pp. 305-318, March 1992.
[57] S. Y. Lee, M. K. Shan, and W. P. Yang, “Similarity Retrieval of Iconic Image Database,” Pattern Recognition, Vol. 22, No. 6, pp. 675-682, June 1989.
[58] S. Y. Lee, M. C. Yang, and J. W. Chen, “2D B-String: A Spatial Knowledge Representation for Image Database Systems,” Proc. of the Second Int. Computer Science Conf., pp. 609-615, 1992.
[59] Y. Liu, D. Zhang, G. Lu, and W. Y. Ma, “A Survey of Content-Based Image Retrieval with High-Level Semantics,” Pattern Recognition, Vol. 40, No. 1, pp. 262-295, Jan. 2007.
[60] W. Y. Ma and B. Manjunath, “Netra: A Toolbox for Navigating Large Image Databases,” Proc. of the IEEE Int. Conf. on Image Processing, pp. 568-571, 1997.
[61] M. Nabil, A. H. H. Ngu, and J. Shepherd, “Picture Similarity Retrieval Using the 2D Projection Interval Representation,” IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 4, pp. 533-539, Aug. 1996.
[62] A. Pentland, R. W. Picard, and S. Scaro , “Photobook: Content-Based Manipulation for Image Database,” Int. Journal of Computer Vision, Vol. 18, No. 3, pp. 233-254, 1996.
[63] G. Petraglia, M. Sebillo, M. Tucci, and G. Tortora, “Virtual Images for Similarity Retrieval in Image Databases,” IEEE Trans. on Knowledge and Data Engineering, Vol. 13, No. 6, pp. 951-967, Nov./Dec. 2001.
[64] E. G. M. Petrakis, “Design and Evaluation of Spatial Similarity Approaches for Image Retrieval,” Image and Vision Computing, Vol. 20, No. 1, pp. 59-76, Jan. 2002.
[65] P. Punitha and D. S. Guru, “An Invariant Scheme for Exact Match Retrieval of Symbolic Images: Triangular Spatial Relationship Based Approach,” Pattern Recognition Letters, Vol. 26, No. 7, pp. 893-907, May 2005.
[66] P. Punitha and D. S. Guru, “An Effective and Efficient Exact Match RetrievalScheme for Symbolic Image Database Systems Based on Spatial Reasoning: A Logarithmic Search Time Approach,” IEEE Trans. on Knowledge and Data Engineering, Vol. 18, No. 10, pp. 1368-1381, Oct. 2006.
[67] Y. Rui, T. S. Huang, and S. F. Chang, “Image Retrieval: Current Techniques, Promising Directions and Open Issues,” Journal of Visual Comm. and Image Representation, Vol. 10, pp. 39-62, 1999.
[68] C. L. Sabharwal and S. K. Bhatia, “Image Databases and Near-Perfect Hash Table,” Pattern Recognition, Vol. 30, No. 11, pp. 1867-1876, Nov. 1997.
[69] H. Samet, “The Quadtree and Related Hierarchical Data Structure,” ACM Computing Surveys, Vol. 16, No. 2, pp. 187-260, June 1984.
[70] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-Based Image Retrieval at The End of The Eearly Years,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22, No. 12, pp. 1349-1380, Dec. 2000.
[71] J. R. Smith and S. F. Chang, “Visualseek: A Fully Automatic Content-Based Query System,” Proc. of the Fourth ACM International Conf. on Multimedia, pp. 87-98, 1996.
[72] H. Tamura and N. Yokoya, “Image Database Systems: A Survey,” Pattern Recognition, Vol. 17, No. 1, pp. 29-43, 1984.
[73] S. L. Tanimoto, “An Iconic/Symbolic Data Structuring Scheme,” Proc. of the Joint Workshop on Pattern Recognition and Arterial Intelligence, pp. 452-471,
June 1976.
[74] J. Z. Wang, J. Li, and G. Wiederhold, “SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 23, No. 9, pp. 947-963, 2001.
[75] J. C. Wong and A. Datta, “Animating Real-time Realistic Movements in Small Plants,” Proc. of the 2nd Int. Conf. on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp. 182-189, 2004.
[76] T. C. Wu and C. C. Chang, “Applications of Geometric Hashing to Iconic Database Retrieval,” Pattern Recognition Letters, Vol. 15, No. 9, pp. 871-876, Sept. 1994.
[77] W. H. Yeh and Y. I. Chang, “An Efficient Signature Extraction Method for Image Similarity Retrieval,” Journal of Information Science and Engineering, Vol. 22, No. 1, pp. 63-94, Jan. 2006.
[78] A. Yoshitaka and T. Ichikawa, “A Survey on Content-Based Retrieval for Multimedia Databases,” IEEE Trans. on Knowledge and Data Engineering, Vol. 11, No. 1, pp. 81-93, Jan./Feb. 1999.
[79] H. J. Zhang and D. Zhong, “A Scheme for Visual Feature-Based Image Indexing,” Proc. of SPIE Conf. on Storage and Retrieval for Image and Video Databases III, pp. 36-46, Feb. 1995.
[80] X. M. Zhou and C. H. Ang, “Retrieving Similar Pictures from a Pictorial Database by an Improved Hashing Table,” Pattern Recognition Letters, Vol. 18, No. 8, pp. 751-758, Aug. 1997.
[81] X. M. Zhou, C. H. Ang, and T. W. Ling, “Image Retrieval Based on Object's Orientation Spatial Relationship,” Pattern Recognition Letters, Vol. 22, No. 5, pp. 469-477, April 2001.
[82] X. S. Zhou and T. S. Huang, “CBIR: From Low-Level Features to High-Level Semantics,” Proc. of the SPIE Image and Video Communication and Processing, Vol. 3974, pp. 426-431, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code