Responsive image
博碩士論文 etd-0616109-191923 詳細資訊
Title page for etd-0616109-191923
論文名稱
Title
建立表現綠色螢光蛋白質之豬胚幹細胞株及其於大鼠帕金森氏症疾病模式之應用
Establishment of GFP-expressing porcine embryonic stem cell lines and application there of in the rat Parkinson’s disease model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-05
繳交日期
Date of Submission
2009-06-16
關鍵字
Keywords
豬胚幹細胞、綠色螢光蛋白質、帕金森氏症、移植
Porcine embryonic stem, Green fluorescent protein, Transplantation, Parkinson’s disease
統計
Statistics
本論文已被瀏覽 5687 次,被下載 11
The thesis/dissertation has been browsed 5687 times, has been downloaded 11 times.
中文摘要
幹細胞具有長期自我增生與分化成特定型態與功能的細胞,因此幹細胞在發育生物學、基因體學、基因轉殖方法、臨床應用潛能、基因治療與組織工程上均是非常重要的研究工具,此具有分化多能性的幹細胞是功能性退化疾病的重要細胞來源。因此,本研究之目的係以外源性綠色螢光基因(green fluorescent protein,GFP)對豬胚幹細胞進行基因轉殖,建立可供移植後追蹤之豬胚幹細胞株,並建立豬胚幹細胞之神經分化定向誘導技術,應用於大鼠帕金森氏症疾病模式之治療應用。雖然從畜產動物分離具有分化多能性的胚幹細胞株較小鼠困難,然本研究已順利自著床前的囊胚成功建立豬胚幹細胞株,並且利用電穿孔法(electroporation)進行豬胚幹細胞之基因轉殖,將外源性GFP成功轉殖入豬胚幹細胞,轉殖後之豬胚幹細胞表現胚幹細胞分化多能性專一細胞標記如Oct-4、AP、SSEA-4、TRA-1-60與TRA-1-81等,顯示經轉染後之豬胚幹細胞株仍保有分化多能性。利用促進神經分化之因子,如維生素A酸(retinoic acid,RA)、音速小子(sonic hedgehog,SHH)與纖維母細胞生長因子(fibroblast growth factor,FGF)進行神經定向誘導分化處理後之衍生細胞,可表現神經專一性抗體如nestin、NFL、MAP2、GFAP、A2B5、TH、ChAT與GABA等,顯示豬胚幹細胞具分化成為神經細胞之潛能。而將此株攜有GFP豬胚幹細胞移植於大鼠腦部,以非侵入式活體影像分析系統(IVIS 50)與侵入式活體影像分析系統(Cellvizio®),追蹤移植後之豬胚幹細胞在大鼠腦部存活與生長情形。在持續3個月的追蹤期間,均可於大鼠腦部測得螢光反應,且處理組大鼠腦組織的螢光表現量比對照組高出2倍以上,顯示攜有GFP豬胚幹細胞確實可做為移植後之追蹤標的細胞。而將豬胚幹細胞及其神經定向誘導分化後之衍生細胞移植於大鼠帕金森氏症疾病模式,移植豬胚幹細胞者於1個月時可見到功能性行為的回復,然第2與3個月時則功能性行為回復較不明顯;而移植誘導化後之成熟神經元細胞者於第3個月時,帕金森氏症大鼠之旋轉行為則有明顯降低,顯示具有治療帕金森氏症之效果,移植部位未有腫瘤之生成,且經免疫染色後發現呈現TH與DA陽性反應,顯示具有多巴胺生成性神經元(dopaminergic neuron)。此等研究結果顯示,所建立之攜有外源性GFP之豬胚幹細胞株,不僅可供胚幹細胞與其衍生細胞應用於活體移植試驗之後續追蹤與研究,並可進一步藉由運用豬胚幹細胞於神經損傷與退化之研究,開發新療法與治療模式,進而得到人類胚幹細胞研究上所不易取的重要資訊,極具應用價值。
Abstract
Stem cells have the ability to reproduce themselves for a long period and differentiate into specific morphological and functional cells. The stem cells are an important material in the developmental biology, genomics, and transgenic methods, as well as in potential clinical applications, gene therapy and tissue engineering. The pluripotent stem cells will be a valuable source in numerous functional degenerated pathologies. Therefore, the objective of this research program was to establish transgenic porcine embryonic stem (pES) cell lines which can express green fluorescent protein (GFP) report gene stably for tracking after transplantation. We also developed a directed differentiation of pES into neural lineages and applied in rat Parkinson’s disease model. Although the establishment of pluripotent ES cell lines from domestic species is much more difficult than that in murine species, our results had successfully isolated and established pES cell lines from pre-implantation blastocysts. Furthermore, we established the novel GFP-expressing pES cell lines (pES/GFP+), which were obtained by electroporation- mediated transfection with exogenous GFP gene. These pES/GFP+ cells exhibited pluripotent markers including Oct-4, AP, SSEA-4, TRA-1-60, and TRA-1-81 as that of human ES cells. The strategy of directed neural differentiation was to culture pES with neurogenic stimulators such as retinoic acid (RA), sonic hedgehog (SHH), and fibroblast growth factor (FGF). Upon directed differentiation toward neural differentiation, these pES-derived cells exhibited typical neuronal morphology and expressed neural lineage-specific markers such as nestin, NFL, MAP2, GFAP, A2B5, TH, ChAT, and GABA. These results showed the pES cells had the potential to differentiate into neural lineages. When pES/GFP+ cells were transplanted into the SD rat’s brain, and their survival and development was determined by the non-invasive In Vivo Imaging System (IVIS 50), and the invasive fibered confocal Cellvizio® Imaging System (Cellvizio®). The results showed that fluorescent signals from pES/GFP+ cells on the injection site of SD rats’ brain could be detected through the experimental period of 3 months. The level of fluorescent signals detected in treatment groups was two folds above that of the control group. Besides, the functional behavior recovery analysis by amphetamine-induced rotation test indicated the PD rat grafted with pES/GFP+ cells and their derived neural progenitors showed no significant recovery of rotation rate in these two treatments because a progressively increased relative rotation through 3 months duration. However, the relative rotation of PD rats grafted with the pES/GFP+-derived mature neurons, showed a stably decrease relative rotation and resulted in a functional recovery from Parkinsonian behavioral defects. Following 3 months completion of behavioral analyses, PD rats were sacrificed for immunohistochemical analysis. In the section of injected site without tumorgenesis and showed the survival and dopaminergic differentiation of grafted pES/GFP+ derived cells when stained with anti-TH and anti-DA. To our knowledge, there have been no reports of establishing GFP-expressing pES cell lines. These novel pES/GFP+ cell lines established in this study might serve as a non-rodent model and could benefit to the studies involving ES cell transplantation, cell replacement therapy, tissue regeneration, and actual approach for pre-clinical research due to their traceable capacity.
目次 Table of Contents
Abstract
Chinese ---------------------------------------------------------1
English -----------------------------------------------------------3

Chapter 1: Introduction
Introduction ------------------------------------------------------6
References ----------------------------------------------------12

Chapter 2 : Establishment and Characterization of Novel Porcine Embryonic Stem Cell Lines Expressing hrGFP
Abstract -----------------------------------------------------------22
Introduction ------------------------------------------------------23
Materials and Methods ---------------------------------------25
Results -----------------------------------------------------------33
Discussion ------------------------------------------------------35
References ------------------------------------------------------39
Figures and Tables -------------------------------------------44

Chapter 3: Directed Differentiation of Porcine Embryonic Stem Cells into Neural Lineages
Abstract -----------------------------------------------------------52
Introduction ------------------------------------------------------54
Materials and Methods ---------------------------------------56
Results -----------------------------------------------------------60
Discussion ------------------------------------------------------63
References ------------------------------------------------------67
Figures and Tables -------------------------------------------75

Chapter 4: Transplanted Performance and Therapeutic Potential of Porcine Embryonic Stem Cells in Parkinson’s Disease Model
Abstract -----------------------------------------------------------82
Introduction ------------------------------------------------------83
Materials and Methods ---------------------------------------86
Results -----------------------------------------------------------91
Discussion ------------------------------------------------------93
References ------------------------------------------------------96
Figures and Tables -----------------------------------------104

Appendix
Publication
參考文獻 References
Aberdam, D., Gambaro, K., Medawar, A., Aberdam, E., Rostagno, P., de la Forest Divonne, S., and Rouleau, M. (2007). Embryonic stem cells as a cellular model for neuroectodermal commitment and skin formation. C R Biol. 330, 479-484.
Anderson, G.B., Choi, S.J., and Bondurant, R.H. (1994). Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology 42, 204-212.
Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., and Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes 50, 1691-1697.
Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I. (1995). Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342-357.
Barberi, T., Klivenyi, P., Calingasan, N.Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A.L., Bruses, J., Rubio, M.E., Topf, N., Tabar, V., Harrison, N.L., Beal, M.F., Moore, M.A., and Studer, L. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200-1207.
Bartsch, G., Yoo, J.J., De Coppi, P., Siddiqui, M.M., Schuch, G., Pohl, H.G., Fuhr, J., Perin, L., Soker, S., and Atala, A. (2005). Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells Dev. 14, 337-348.
Belloli, S., Jachetti, E., Moresco, R.M., Picchio, M., Lecchi, M., Valtorta, S., Freschi, M., Michelini, R.H., Bellone, M., and Fazio, F. (2009). Characterization of preclinical models of prostate cancer using PET-based molecular imaging. Eur. J. Nucl. Med. Mol. Imaging. [Epub ahead of print]
Bencheikh, M., Bentsman, G., Sarkissian, N., Canki, M., and Volsky, D.J. (1999). Replication of different clones of human immunodeficiency virus type 1 in primary fetal human astrocytes: enhancement of viral gene expression by Nef. J. Neurovirol. 5, 115-124.
Björklund, A., and Lindvall, O. (2000). Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537-544.
Bjorklund, L.M., Sánchez-Pernaute, R., Chung, S., Andersson, T., Chen, I.Y., McNaught, K.S., Brownell, A.L., Jenkins, B.G., Wahlestedt, C., Kim, K.S., and Isacson, O. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA. 99, 2344-2349.
Brederlau, A., Correia, A.S., Anisimov, S.V., Elmi, M., Paul, G., Roybon, L., Morizane, A., Bergquist, F., Riebe, I., Nannmark, U., Carta, M., Hanse, E., Takahashi, J., Sasai, Y., Funa, K., Brundin, P., Eriksson, P.S., and Li, J.Y. (2006). Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24, 1433-1440.
Brevini, T.A., Antonini, S., Cillo, F., Crestan, M., and Gandolfi, F. (2007). Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology 68 (Suppl 1), S206-S213.
Buytaert-Hoefen, K.A., Alvarez, E., and Freed, C.R. (2004). Generation of tyrosine hydroxylase positive neurons from human embryonic stem cells after coculture with cellular substrates and exposure to GDNF. Stem Cells 22, 669-674.
Byrne, J.A., Perdersen, D.A., Clepper, L.L., Nelson, M., Sanger, W.G., Gokhale, S., Wolf, P.D., and Mitalipov, S.M. (2007). Producing primate embryonic stem cells by nuclear transfer. Nature 450, 497-502.
Carpenter, M.K., Inokuma, M.S., Denham, J., Mujtaba, T., Chiu, C.P., and Rao, M.S. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172, 383-397.
Cazillis, M., Lelièvre, V., and Gressens, P. (2005). Neural differentiation of murine embryonic stem cells ES. Med. Sci. (Paris). 21, 484-490.
Chan, A.W., Homan, E.J., Ballou, L.U., Burns, J.C., and Bremel, R.D. (1998). Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc. Natl. Acad. Sci. USA. 95, 14028-14033.
Chen, L.R., Shiue, Y.L., Bertolini, L., Medrano, J.F., BonDurant, R.H., and Anderson, G.B. (1999). Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 52, 195-212.
Chen, L.R., Wang, H.P., and Wu, M.C. (1991). In vitro culture of mammalian embryonic stem cells: II. In vitro culture of blastocyst-derived cells in mouse and pigs. J. Chin. Soc. Anim. Sci. 20, 326-339.
Cherry, S.R., Biniszkiewicz, D., van Parijs, L., Baltimore, D., and Jaenisch, R. (2000). Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell. Biol. 20, 7419-7426.
Chudakov, D.M., Lukyanov, S., and Lukyanov, K.A. (2005). Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605-613.
Ciccolini, F., and Svendsen, C.N. (1998). Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci. 18, 7869-7880.
Donovan, P.J., and Gearhart, J. (2001). The end of the beginning for pluripotent stem cells. Nature 414, 92-97.
Doubrovin, M., Serganova, I., Mayer-Kuckuk, P., Ponomarev, V., and Blasberg, R.G. (2004). Multimodality in vivo molecular - genetic imaging. Bioconjug. Chem. 15, 1376-1388.
Drukker, M. (2008). Recent advancements towards the derivation of immune-compatible patient-specific human embryonic stem cell lines. Semin. Immunol. 20, 123-129.
Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., Reubinoff, B., Mandelboim, O., and Benvenisty, N. (2002). Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. USA. 99, 9864-9869.
Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.
Feletou, M., and Teisseire, B. (1992). Vascular pharmacology of the micropig: Importance of the endothelium. In: Swine as Models in Biomedical Research, Swindle, M.M. ed. Ames, Iowa: Iowa State University Press. pp. 74-95.
Ferguson, T.A., Green, D.R., and Griffith, T.S. (2002). Cell death and immune privilege. Int. Rev. Immunol. 21, 153-172.
Flye, M.W. (1992). Orthotopic liver transplantation in outbred and partially inbred swine. In: Swine as Models in Biomedical Research, Swindle, M.M. ed. Ames, Iowa: Iowa State University Press. pp. 44-56.
Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J. (1995). In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181-3188.
Freed, C.R., Greene, P.E., Breeze, R.E., Tsai, W.Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J.Q., Eidelberg, D., and Fahn, S. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710-719.
Gerrard, L., Zhao, D., Clark, A.J., and Cui, W. (2005). Stably transfected human embryonic stem cell clones express OCT4-specific green fluorescent protein and maintain self-renewal and pluripotency. Stem Cells 23, 124-133.
Grossman, H.B., Gomella, L., Fradet, Y., Morales, A., Presti, J., Ritenour, C., Nseyo, U., and Droller, M.J. (2007). A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J. Urol. 178, 62-67.
Guan, K., Chang, H., Rolletschek, A., and Wobus, A.M. (2001). Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res. 305, 171-176.
Hadjantonakis, A.K., Macmaster, S., and Nagy, A. (2002). Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2, 11-19.
Hall, T.S., Stuart, R.S., Baumgarten, W.A., Borkon, A.M., Swindle, M.M., Galloway, E., and Reitz, B.A. (1986). Use of swine in heart transplantation research. In: Swine in Biomedical Research, Tumbleson, M.E. ed. New York: Plenum Press. pp. 373-376.
Henriksson, K.C., Almgren, M.A.E., Thurlow, R., Varki, N.M., and Chang, C.L. (2004). A fluorescent orthotopic mouse model for reliable measurement and genetic modulation of human neuroblastoma metastasis. Clin. Exp. Metastasis 21, 563-570.
Hermes, B., Spöler, F., Naami, A., Bornemann, J., Först, M., Grosse, J., Jakse, G., Knüchel, R. (2008). Visualization of the basement membrane zone of the bladder by optical coherence tomography: Feasibility of noninvasive evaluation of tumor invasion. Urology 72, 677-681.
Hochereau-de Reviers, M.T., and Perreau, C. (1993). In vitro culture of embryonic disc cells from porcine blastocysts. Reprod. Nutr. Dev. 33, 475-483.
Hoffman, R.M. (2008). A better fluorescent protein for whole-body imaging. Trends Biotechnol. 26, 1-4.
Hofmann, A., Kessler, B., Ewerling, S., Weppert, M., Vogg, B., Ludwig, H., Stojkovic, M., Boelhauve, M., Brem, G., Wolf, E., and Pfeifer, A. (2003). Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports 4, 1054-1060.
Hornykiewicz, O. (1998). Biochemical aspects of Parkinson's Disease. Am. Acad. Neurol. 5 (Suppl 2), 2-9.
Hudson, J.L., Levin, D.R., and Hoffer, B.J. (1993). A 16-channel automated rotometer system for reliable measurement of turning behavior in 6-hydroxydopamine lesioned and transplanted rats. Cell Transplant. 2, 507-514.
Hüttmann, A., Li, C.L., and Dührsen, U. (2003). Bone marrow-derived stem cells and "plasticity". Ann. Hematol. 82, 599-604.
Iacovitti, L., Donaldson, A.E., Marshall, C.E., Suon, S., and Yang, M. (2007). A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: Studies in vitro and in vivo. Brain Res. 1127, 19-25.
Jang, Y.K., Park, J.J., Lee, M.C., Yoon, B.H., Yang, Y.S., Yang, S.E., and Kim, S.U. (2004). Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J. Neurosci. Res. 75, 573-584.
Jüngling, K., Nägler, K., Pfrieger, F.W., and Gottmann, K. (2003). Purification of embryonic stem cell-derived neurons by immunoisolation. FASEB J. 17, 2100-2102.
Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S.I., and Sasai, Y. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31-40.
Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407-414.
Keller, G. (2005). Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129-1155.
Kim, J.H., Auerbach, J.M., Rodríguez-Gómez, J.A., Velasco, I., Gavin, D., Lumelsky, N., Lee, S.H., Nguyen, J., Sánchez-Pernaute, R., Bankiewicz, K., and McKay, R. (2002). Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50-56.
Kim, J.H., Do, H.J., Choi, S.J., Cho, H.J., Park, K.H., Yang, H.M., Lee, S.H., Kim, D.K., Kwack, K., Oh, S.K., Moon, S.Y., Cha, K.Y., and Chung, H.M. (2005). Efficient gene delivery in differentiated human embryonic stem cells. Exp. Mol. Med. 37, 36-44.
Kimura, H., Yoshikawa, M., Matsuda, R., Toriumi, H., Nishimura, F., Hirabayashi, H., Nakase, H., Kawaguchi, S., Ishizaka, S., and Sakaki, T. (2005). Transplantation of embryonic stem cell-derived neural stem cells for spinal cord injury in adult mice. Neurol. Res. 27, 812-819.
Kurihara-Bergstrom, T., Woodworth, M., Feisullin, S., and Beall, P. (1986). Characterization of the Yucatan miniature pig skin and small intestine for pharmaceutical applications. Lab. Anim. Sci. 36, 396-399.
Lakshmipathy, U., Pelacho, B., Sudo, K., Linehan, J.L., Coucouvanis, E., Kaufman, D.S., and Verfaillie, C.M. (2004). Efficient transfection of embryonic and adult stem cells. Stem Cells 22, 531-543.
Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675-679.
Li, M., Li, Y.H., Hou, Y., Sun, X.F., Sun, Q., and Wang, W.H. (2004). Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12, 43-48.
Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., and Wang, W.H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65, 429-434.
Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., and Wang, W.H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. 65, 429-434.
Li, X.J., Du, Z.W., Zarnowska, E.D., Pankratz, M., Hansen, L.O., Pearce, R.A., and Zhang, S.C. (2005). Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215-221.
Lorenz, P., Harnack, U., and Morgenstern, R. (2004). Efficient gene transfer into murine embryonic stem cells by nucleofection. Biotechnol. Lett. 26, 1589-1592.
Loring, J.F., and Rao, M.S. (2006). Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells 24, 145-150.
Löscher, W., Richter, A., Nikkhah, G., Rosenthal, C., Ebert, U., and Hedrich, H.J. (1996). Behavioral and neurochemical dysfunction in the circling (ci) rat: a novel genetic animal model of a movement disorder. Neuroscience 74, 1135-1142.
Lundstrom, K. (2003). Latest development in viral vectors for gene therapy. Trends Biotechnol. 21, 117-122.
Ma, H., Liu, Q., Diamond, S.L., and Pierce, E.A. (2004). Mouse embryonic stem cells efficiently lipofected with nuclear localization peptide result in a high yield of chimeric mice and retain germline transmission potency. Methods 33, 113-120.
Maden, M. (2002). Retinoid signalling in the development of the central nervous system. Nat. Rev. Neurosci. 3, 843-853.
Mancheño-Corvo, P., and Martín-Duque, P. (2006). Viral gene therapy. Clin. Transl. Oncol. 8, 858-867.
Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 78, 7634-7638.
Martinat, C., Bacci, J.J., Leete, T., Kim, J., Vanti, W.B., Newman, A.H., Cha, J.H., Gether, U., Wang, H., and Abeliovich, A. (2006). Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl. Acad. Sci. USA. 103, 2874-2879.
Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841-847.
Matsunaga, E., Katahira, T., and Nakamura, H. (2002). Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129, 5269-5277.
Menasché, P. (2005). The potential of embryonic stem cells to treat heart disease. Curr. Opin. Mol. Ther. 7, 293-299.
Moore, K., and Piedrahita, J.A. (1997). The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cell Dev. Biol. Anim. 33, 62-71.
Moritoh, Y., Yamato, E., Yasui, Y., Miyazaki, S., and Miyazaki, J. (2003). Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes 52, 1163-1168.
Mudgett, J.S., and Livelli, T.J. (1995). Electroporation of embryonic stem cells for generating transgenic mice and studying in vitro differentiation. Methods Mol. Biol. 48, 167-184.
Muramatsu, S.I., Okuno, T., Suzuki, Y., Nakayama, T., Kakiuchi, T., Takino, N., Iida, A., Ono, F., Terao, K., Inoue, N., Nakano, I., Kondo, Y., and Tsukada, H. (2009). Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson's disease. Synapse 63, 541-548.
Nishimura, F., Yoshikawa, M., Kanda, S., Nonaka, M., Yokota, H., Shiroi, A., Nakase, H., Hirabayashi, H., Ouji, Y., Birumachi, J., Ishizaka, S., and Sakaki, T. (2003). Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells 21, 171-180.
Oh, S.K., Kim, H.S., Ahn, H.J., Seol, H.W., Kim, Y.Y., Park, Y.B., Yoon, C.J., Kim, D.W., Kim, S.H., and Moon, S.Y. (2005). Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23, 211-219.
Olanow, C.W., and Tatton, W.G. (1999). Etiology and pathogenesis of Parkinson's disease. Annu. Rev. Neurosci. 22, 123-144.
Otonkoski, T., Gao, R., and Lundin, K. (2005). Stem cells in the treatment of diabetes. Ann. Med. 37, 513-520.
Park, C.H., Minn, Y.K., Lee, J.Y., Choi, D.H., Chang, M.Y., Shim, J.W., Ko, J.Y., Koh, H.C., Kang, M.J., Kang, J.S., Rhie, D.J., Lee, Y.S., Son, H., Moon, S.Y., Kim, K.S., and Lee, S.H. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J. Neurochem. 92, 1265-1276.
Paxinos, G., and Watson, C. (1986). The rat brain in stereotaxic coordinates. 2nd ed. Academic Press, New York.
Perrier, A.L., Tabar, V., Barberi, T., Rubio, M.E., Bruses, J., Topf, N., Harrison, N.L., and Studer, L. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA. 101, 12543-12548.
Pfeifer, A., Ikawa, M., Dayn, Y., and Verma, I.M. (2002). Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. USA. 99, 2140-2145.
Phillips, R.W., and Tumbleson, M.E. (1986). Models in ‘swine in biomedical research’, Vol. 1. Tumbleson, M.E., ed. New York: Plenum Press. pp. 437-440.
Piccini, P., Brooks, D.J., Björklund, A., Gunn, R.N., Grasby, P.M., Rimoldi, O., Brundin, P., Hagell, P., Rehncrona, S., Widner, H., and Lindvall, O. (1999). Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci. 2, 1137-1140.
Piedrahita, J.A., Anderson, G.B., and Bondurant, R.H. (1990). On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology 34, 879-901.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
Popova, E., Rentzsch, B., Bader, M., and Krivokharchenko, A. (2008). Generation and characterization of a GFP transgenic rat line for embryological research. Transgenic Res. 17, 955-963.
Prelle, K., Vassiliev, I.M., Vassilieva, S.G., Wolf, E., and Wobus, A.M. (1999). Establishment of pluripotent cell lines from vertebrate species - present status and future prospects. Cells Tissues Organs 165, 220-236.
Przyborski, S.A., Smith, S., and Wood, A. (2003). Transcriptional profiling of neuronal differentiation by human embryonal carcinoma stem cells in vitro. Stem Cells 21, 459-471.
Puri, S., and Hebrok, M. (2007). Dynamics of embryonic pancreas development using real-time imaging. Dev. Biol. 306, 82-93.
Qiao, H., Zhang, H., Zheng, Y., Ponde, D.E., Shen, D., Gao, F., Bakken, A.B., Schmitz, A., Kung, H.F., Ferrari, V.A., and Zhou, R. (2009). Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250, 821-829.
Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399-404.
Robbins, P.B., Yu, X.J., Skelton, D.M., Pepper, K.A., Wasserman, R.M., Zhu, L., and Kohn, D.B. (1997). Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J. Virol. 71, 9466-9474.
Robertson, E., Bradley, A., Kuehn, M., and Evans, M. (1986). Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445-448.
Robertson, E.J., and Bradley, A. (1986). Production of permanent cell lines from early embryos and their use in studying developmental problems. In Experimental Approaches to Mammalian Embryonic Development. Rossant, J., and Pedersen, R.A. eds. Cambridge Press, New York. pp. 475-508.
Rodríguez-Gómez, J.A., Lu, J.Q., Velasco, I., Rivera, S., Zoghbi, S.S., Liow, J.S., Musachio, J.L., Chin, F.T., Toyama, H., Seidel, J., Green, M.V., Thanos, P.K., Ichise, M., Pike, V.W., Innis, R.B., and McKay, R.D. (2007). Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 25, 918-928.
Ross, S.A., McCaffery, P.J., Drager, U.C., and De Luca, L.M. (2000). Retinoids in embryonal development. Physiol. Rev. 80, 1021-1054.
Rui, R., Qiu, Y., Hu, Y., and Fan, B. (2006). Establishment of porcine transgenic embryonic germ cell lines expressing enhanced green fluorescent protein. Theriogenology 65, 713-720.
Sánchez-Pernaute, R., Studer, L., Ferrari, D., Perrier, A., Lee, H., Viñuela, A., and Isacson, O. (2005). Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23, 914-922.
SAS Institute Inc., 1996. The SAS® system for Windows. Release version 6.12, SAS Institute Inc., Cary, North Carolina, USA.
Schmidt, M.M., Guan, K., and Wobus, A.M. (2001). Lithium influences differentiation and tissue-specific gene expression of mouse embryonic stem (ES) cells in vitro. Int. J. Dev. Biol. 45, 421-429.
Schuldiner, M., Eiges, R., Eden, A., Yanuka, O., Itskovitz-Eldor, J., Goldstein, R.S., and Benvenisty, N. (2001). Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201-205.
Schulz, T.C., Palmarini, G.M., Noggle, S.A., Weiler, D.A., Mitalipova, M.M., and Condie, B.G. (2003). Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci. 4, 27-39.
Shamblott, M.J., Axelman, J., Littlefield, J.W., Blumenthal, P.D., Huggins, G.R., Cui, Y., Cheng, L., and Gearhart, J.D. (2001). Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl. Acad. Sci. USA. 98, 113-118.
Shim, J.W., Koh, H.C., Chang, M.Y., Roh, E., Choi, C.Y., Oh, Y.J., Son, H., Lee, Y.S., Studer, L., and Lee, S.H. (2004). Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4- phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J. Neurosci. 24, 843-852.
Shiue, Y.L., Liou, J.F., Shiau, J.W., Yang, J.R., Chen, Y.H., Tailiu, J.J., and Chen, L.R. (2006). In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim. Reprod. Sci. 93, 134-143.
Shufaro, Y., and Reubinoff, B.E. (2004). Therapeutic applications of embryonic stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18, 909-927.
Siemen, H., Nix, M., Endl, E., Koch, P., Itskovitz-Eldor, J., and Brüstle, O. (2005). Nucleofection of human embryonic stem cells. Stem Cells Dev. 14, 378-383.
Sinn, P.L., Sauter, S.L., and McCray, P.B. Jr. (2005). Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors - design, biosafety, and production. Gene Ther. 12, 1089-1098.
Smith-Arica, J.R., Thomson, A.J., Ansell, R., Chiorini, J., Davidson, B., and McWhir, J. (2003). Infection efficiency of human and mouse embryonic stem cells using adenoviral and adeno-associated viral vectors. Cloning Stem Cells 5, 51-62.
Smukler, S.R., Runciman, S.B., Xu, S., and van der Kooy, D. (2006). Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79-90.
Sonn, G.A., Mach, K.E., Jensen, K., Hsiung, P.L., Jones, S.N., Contag, C.H., Wang, T.D., and Liao, J.C. (2009). Fibered confocal microscopy of bladder tumors: an ex vivo study. J. Endourol. 23, 197-201.
Stice, S.L., and Strelchenko, N.S. (1996). Domestic animal embryonic stem cells: progress toward germ-line contribution. In Biotechnology's Role in the Genetic Improvement of Farm Animals. Beltsville Symposia in Agricultural Research, Miller, R.H., Pursel, V.G. and Norman, H.D. eds. American Society of Animal Science. pp. 189-201.
Strübing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., and Wobus, A.M. (1995). Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275-287.
Svendsen, C.N., ter Borg, M.G., Armstrong, R.J., Rosser, A.E., Chandran, S., Ostenfeld, T., and Caldwell, M.A. (1998). A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141-152.
Swindle, M.M., Thompson, R.P., Carabello, B.A., Smith, A.C., Green, C., and Gillette, P.C. (1992). Congenital cardiovascular disease. In: Swine as Models in Biomedical Research, Swindle, M.M. ed. Ames, Iowa: Iowa State University Press. pp. 176-184.
Takagi, Y., Takahashi, J., Saiki, H., Morizane, A., Hayashi, T., Kishi, Y., Fukuda, H., Okamoto, Y., Koyanagi, M., Ideguchi, M., Hayashi, H., Imazato, T., Kawasaki, H., Suemori, H., Omachi, S., Iida, H., Itoh, N., Nakatsuji, N., Sasai, Y., and Hashimoto, N. (2005). Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 115, 102-109.
Takahashi, J., Takagi, Y., and Saiki, H. (2009). Transplantation of embryonic stem cell-derived dopaminergic neurons in MPTP-treated monkeys. Methods Mol. Biol. 482, 199-212.
Taylor, H., and Minger, S.L. (2005). Regenerative medicine in Parkinson's disease: generation of mesencephalic dopaminergic cells from embryonic stem cells. Curr. Opin. Biotechnol. 16, 487-492.
Thinyane, K., Baier, P.C., Schindehütte, J., Mansouri, A., Paulus, W., Trenkwalder, C., Flügge, G., and Fuchs, E. (2005). Fate of pre-differentiated mouse embryonic stem cells transplanted in unilaterally 6-hydroxydopamine lesioned rats: histological characterization of the grafted cells. Brain Res. 1045, 80-87.
Thompson, L., Barraud, P., Andersson, E., Kirik, D., and Björklund, A. (2005). Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J. Neurosci. 25, 6467-6477.
Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A., and Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA 92, 7844-7848.
Tompers, D.M., and Labosky, P.A. (2004). Electroporation of murine embryonic stem cells: A step-by-step guide. Stem Cells 22, 243-249.
Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65-78.
Turnpenny, L., Cameron, I.T., Spalluto, C.M., Hanley, K.P., Wilson, D.I., and Hanley, N.A. (2005). Human embryonic germ cells for future neuronal replacement therapy. Brain Res. Bull. 68, 76-82.
Vescovi, A.L., Parati, E.A., Gritti, A., Poulin, P., Ferrario, M., Wanke, E., Frölichsthal-Schoeller, P., Cova, L., Arcellana-Panlilio, M., Colombo, A., and Galli, R. (1999). Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71-83.
Ward, C.M., and Stern, P.L. (2002). The human cytomegalovirus immediate-early promoter is transcriptionally active in undifferentiated mouse embryonic stem cells. Stem Cells 20, 472-475.
Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397.
Winnard, P.T. Jr., Kluth, J.B., and Raman, V. (2006). Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia 8, 796-806.
Wobus, A.M., and Boheler, K.R. (2005). Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85, 635-678.
Wobus, A.M., Kaomei, G., Shan, J., Wellner, M.C., Rohwedel, J., Guanju, J., Fleischmann, B., Katus, H.A., Hescheler, J., and Franz, W.M. (1997). Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell Cardiol. 29, 1525-1539.
Wolfgang, M.J., Eisele, S.G., Browne, M.A., Schotzko, M.L., Garthwaite, M.A., Durning, M., Ramezani, A., Hawley, R.G., Thomson, J.A., and Golos, T.G. (2001). Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc. Natl. Acad. Sci. USA. 98, 10728-10732.
Yan, Y., Yang, D., Zarnowska, E.D., Du, Z., Werbel, B., Valliere, C., Pearce, R.A., Thomson, J.A., and Zhang, S.C. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23, 781-790.
Yan, Z., Zak, R., Zhang, Y., and Engelhardt, J.F. (2005). Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes. J. Virol. 79, 364-379.
Yanez, R.J., and Porter, A.C. (1999). Influence of DNA delivery method on gene targeting frequencies in human cells. Somat. Cell Mol. Genet. 25, 27-31.
Yang, D., Zhang, Z.J., Oldenburg, M., Ayala, M., and Zhang, S.C. (2008). Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in Parkinsonian rats. Stem Cells 26, 55-63.
Yang, J.R., Shiue, Y.L., Liao, C.H., Lin, S.Z., and Chen, L.R. (2009). Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning Stem Cells. (in press)
Yang, J.R., Shiue, Y.L., Liao, C.H., Lin, S.Z., and Chen, L.R. (2009). Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning Stem Cells. (in press)
Yang, M., Reynoso, J., Bouvet, M., and Hoffman, R.M. (2009). A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment. J. Cell Biochem. 106, 279-284.
Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A., and Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755-766.
Yoshizaki, T., Inaji, M., Kouike, H., Shimazaki, T., Sawamoto, K., Ando, K., Date, I., Kobayashi, K., Suhara, T., Uchiyama, Y., and Okano, H. (2004). Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells. Neurosci. Lett. 363, 33-37.
Yue, F., Cui, L., Johkura, K., Ogiwara, N., and Sasaki, K. (2006). Induction of midbrain dopaminergic neurons from primate embryonic stem cells by coculture with sertoli cells. Stem Cells 24, 1695-1706.
Zambraski, E.J., Thomas, G.D., and O'Hagan, K.P. (1992). DOCA-treated Yucatan miniature swine: A neurogenic model of essential hypertension. In: Swine as Models in Biomedical Research, Swindle, M.M. ed. Ames, Iowa: Iowa State University Press. pp. 290-301.
Zeng, X., Cai, J., Chen, J., Luo, Y., You, Z.B., Fotter, E., Wang, Y., Harvey, B., Miura, T., Backman, C., Chen. G.J., Rao, M.S., and Freed, W.J. (2004). Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22, 925-940.
Zeng, X., Chen, J., Sanchez, J.F., Coggiano, M., Dillon-Carter, O., Petersen, J., and Freed, W.J. (2003). Stable expression of hrGFP by mouse embryonic stem cells: promoter activity in the undifferentiated state and during dopaminergic neural differentiation. Stem Cells 21, 647-653.
Zhang, S.C., Wernig, M., Duncan, I.D., Brüstle, O., and Thomson, J.A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129-1133.
Zhou, J.M., Xing, F.Y., Shi, J.J., Fang, Z.F., Chen, X.J., and Chen, F. (2008). Quality of embryonic bodies and seeding density effects on neural differentiation of mouse embryonic stem cells. Cell Biol. Int. 32, 1169-1175.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code