Responsive image
博碩士論文 etd-0616113-113854 詳細資訊
Title page for etd-0616113-113854
論文名稱
Title
新穎發藍光材料與利用質子化製備可調變式光源應用於有機高分子發光二極體
Novel Blue-emitting and Tunable Emissions Prepared by Proton-induced Color Change Materials with Applications to PLED
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
182
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-19
繳交日期
Date of Submission
2013-07-17
關鍵字
Keywords
蒽、質子化、三苯基胺、聚芳香醚、咔唑、光酸、有機發光二極體、白光元件
Poly (arylene ether)s polymer., PLED, Proton-Induced, White light, carbazole, anthracene, triphenylamine
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
本論文旨在開發研究適用於有機發光二極體顯示器(Display)以及照明之可調變式光技術。本研究內容的架構可分為兩個部分三個主題,第一個部分針對有機發深藍光材料合成出發(第四章),在藍光材料方面,本章節主要以合成新穎藍光聚芳香醚高分子並將其製備成有機高分子發光二極體為研究。其中,主體材料為蒽(Anthracene)二氟單體之衍生物,客體材料為以三苯基胺(Triphenylamine)為延伸結構類似於文獻上所常看見的BD-1之非對稱衍生物,電洞傳輸材料則為結構中帶有咔唑(Carbazole)之二醇衍生物。一般而言,Anthracene衍生物及BD-1為文獻所常看見的主、客體藍光高分子摻雜,主體利用Förster energy transfer方式轉移能量至客體,因此具有良好的發光效率。但由於Anthracene之共平面性佳,在進行蒸鍍時易於結晶,導致漏電產生,且多層結構的蒸鍍亦會阻礙電荷注入到發光層。從分子設計的角度下,本研究(1)利用C-F鍵及Carbazole增加高分子鏈之立體障礙性及藉由氟化改變化合物的最高占用分子軌域-最低未占用分子軌域(HOMO-LUMO)能階位,(2)將電洞傳輸層導入發光層之中。將兩種單體Anthracene衍生物二氟單體及Carbazole之二醇衍生物依適當比例,經由親核性聚縮合反應合成出一種新穎藍光高分子。
第二個部分為可調變光源應用於顯示器與照明領域為主軸,延續第四章後段製備藍光元件部份,將已聚合成功之藍光聚芳香醚高分子摻雜少量藍光客體製作為元件發光層,其元件結構為:ITO/PEDOT:PSS/發光層/LiF/Al,發光層可利用溶劑製程旋轉塗佈方式製作,其優勢在於製程便利及可大面積化。未摻雜客體前,藍光高分子製作PLED起始電壓可以降低至4.5 V、最大亮度為7466 cd/m2、效率高達4.2 cd/A。CIE座標方面達(0.15,0.08),相當接近NTSC的官方規定的藍光座標 (0.14,0.08)。當摻雜藍光客體3%時,起始電壓可以維持在4.5 V、最大亮度為12104 cd/m2、效率高達5.79 cd/A。而後我們利用有機發螢光材料製備螢光轉換層光替代彩色濾光片應用於TFT-LCD在顯示器上之研究,其中我們針對有機發螢光色轉換層(第五章)做開發及討論。在有機發螢光色轉換層法方面,首先針對商業化彩色濾光片,本人提出有機發螢光色轉換層技術置換彩色濾光片,此目的在以解決彩色濾光片因(1).光利用率不佳、僅利用約1/3的光通量所帶來濾光效應(Fierter effect)以及(2).色再現性普遍較小等問題,做改善進而提升光利用率以及增加色再現性,本研究成功的克服了彩色濾光片所造成的以上兩種問題,將在此章節有詳細的介紹。
最後為利用有機發螢光材料利用質子化製備可調變式之有機高分子發光二極體(PLED)光源在顯示器和照明上之研究,在這裡我們分別以藍光光源搭配質子化光色轉換層製備三原色與互補色之發白光元件(第六章)及利用Host-guest系統搭配質子酸化反應制備單一層有機高分子之發白光元件(第七章)做為此部份之主題。
第六章在光酸質子化光色轉換層方面,我們除了藍光元件的製作外,更利用高效率發綠螢光材料C545T作為客體摻雜,其本身在不同光酸質子化製程條件下,可調變出三種光色分別為綠光,橘光及紅光放光的特點,並選擇適當的藍光背光源(BP-105)搭配有機質子化光色轉換層進而製作出可調變式的光源(分別為特例互補色及三原色之白光光源),在調變的優越性且穩定的綠光,橘光與紅光的光色薄膜下。進一步,在此三光色轉換層的搭配下將可製作出可調變式的光源,且由於只需要約120度的低溫薄膜製程,這將使薄膜製備能夠更為簡化,量產成本能夠更為降低。
第七章接著在質子酸化反應法方面,本人使用本實驗室自行合成之新穎發深藍光聚芳香醚高分子其具備發深藍光以及高能量的BH當作質子酸化反應之可調變光源式PLED的主體材料(Host),進而使用高效率發綠光材料C545T做為客體(Guest)搭配苯磺酸做為製備調變質子化程度之可調變式PLED元件。在互補雙色及三原色的特例白光元件部份,將藍光聚芳香醚高分子主體摻雜少量C545T發綠光客體及苯磺酸作為元件發光層,元件結構為:ITO/PEDOT:PSS/發光層/BCP/LiF/Al,發光層可利用溶劑製程旋轉塗佈方式製作,其優勢在於製程便利及可大面積化。在互補色(藍橘光)白光元件最大亮度可達12866 cd/m2,最大電流效率為5.58 cd/A,最大功率效率為2.68 lm/W,CIE座標為(0.31,0.33)而在三原色(藍綠紅光)最大亮度可達10762cd/m2,最大電流效率為6.55 cd/A,最大功率效率為2.75 lm/W,CIE座標為(0.33,0.35)相當接近NTSC的官方規定的白光座標 (0.33,0.33)。非常適合在白光照明上之應用。
Abstract
PLEDs for display and lighting application were studied. In this thesis, a novel blue Poly (arylene ether) s polymer was prepared for the organic polymer light emitting diodes which was composed of the main material anthracene difluoro monomer derivatives, and object material of triphenylamine with the extension structure similar to the literature seen BD-1 asymmetric derivatives, as the hole transport material of carbazole of the diol derivatives. In general, Anthracene derivatives and BD-1, often seen in the literature as the host, guest blue polymer doping, the main use to Förster energy transfer to transfer energy to the guest, so it has good luminous efficiency. Anthracene, flat Good, easy to crystallization during evaporation, resulting in leakage generated; and the deposition of the multilayer structure will hinder charge injection to the emitting layer. From the angle of the molecular design of this study. (1) Use of the CF bond and Carbazole increase the steric hindrance of the polymer chain and change by fluoride compounds of the highest occupied molecular orbital - lowest unoccupied molecular orbital energy level. (2) The hole transport layer to import into the emitting layer. The two monomers Anthracene derivatives fluoride monomer the Carbazole of diol derivatives via nucleophilic polycondensation synthesis of a novel in proper proportion, Blue polymer.
Component parts, the Blue poly aromatic ether polymer doped with a small amount of blue light-emitting guest as a component layer of the component structure: ITO / PEDOT: PSS / emitting layer / LiF / Al light-emitting layer can make use of spin coating of solvent process, and its advantage is the convenience of the process and a large area. The undoped guest before the Blue polymer production the PLED starting voltage can be reduced to 4.5 V, and maximum brightness 7 466 cd/m2, efficiency as high as 4.2 cd / A. C.I.E. coordinates of (0.15,0.08), very close to the official regulations of the NTSC Blue coordinates (0.14,0.08). When doped with 3% of the guest, the starting voltage can be reduced to 4.5 V, maximum brightness of 12104 cd/m2 and efficiency as high as 5.79 cd/A.
The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photo resist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent
thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.
A Tunable Emission Prepared by Photo-Induced Color-Change Materials with Blue LEDs as Excitation Light Sources. In this thesis, photo-chemically induced emission tuning was used for the definition of pixels emitting the three primary colors of green, orange, and red. This study used the commercially common organic green fluorescent material 10-(2-Benzothiazolyl)-2,3,6,7- tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)benzopyropyrano(6,7-8-I,j)quinolizin-11-one (C545T). C545T was doped into an SU8-negative photo-resist to prepare the color conversion film. The colors of the color conversion film were adjusted using the
time of exposure to UV light (I-line 365 nm). In the unexposed film areas, there was a green fluorescent thin film (L1-Green). The exposure of the selected areas of the thin film increased with the exposure time, and the light acid number of the SU8 photo-resist continuously rose. The interaction of the photo-acid and C545T resulted in acid-induced quenching. When the exposure time was 120 s, the thin film changed to orange (L2-Orange). When the exposure time lasted up to 360 s, the C545T in the thin film finishedreacting with the photo-acid to producemostly protonated C545T, and the thin film changed into a red fluorescent thin film (L3-RED), leading to a wave of red shift. The absorption and the emission of L1, L2, and L3 were photo-chemically induced changes. L1, L2, and L3 were closely attached with the blue PLED backlight to achieve a tunable emission module, which was an optic thin film attached to the color-changing materials.
A Tunable Emission Prepared by Proton-Induced Fluorescent Color Change Materials for a Potential Application in PLEDs. Proton-chemically induced emission tuning was used for the definition of pixels emitting three primary colors of green, orange, and red. This study used the benzenesulfonic acid doped C545T in Chlorobenzene. The changed color of C545T was observed by adding benzensulfonic acid. Furthermore, we explored the reversible phenomenon of protonation/deprotonation. The chlorobenzene solution of C545T in the neutral state emits a green fluorescence (L1). When benzenesulfonic acid was added to the
C545T solution in chlorobenzene, C545T was protonated and the protonation level increased with increasing the benzenesulfonic acid concentration. The interaction of the protonation acid and C545T resulted in acid-induced quenching. When the ratio of doping between benzenesulfonic and C545T was 1:0.8, light changed form protonation C545T to orange (L2). When the ratio of adding benzenesulfonic acid lasted up to 1:1.6, the C545T in Chlorobenzene finished reacting with the benzensulfonic acid to produce mostly protonated C545T, and the color of Chlorobenzene changed into a red one (L3), leading to a wave of redshift. The absorption and the emission of L1, L2, and L3 were protonation-chemically induced changes. L1, L2, and L3 were doped in the blue PLED device to achieve a tunable emission module. The type 1 device exhibited a turn-on voltage of 5.5 V and a maximum brightness of 10762 cd •m−2. It exhibited a maximum luminous efficiency of 6.55 cd •A−1, an external quantum efficiency of 2.57%, and a power efficiency of 2.75 lm •W−1 with CIE coordinates (0.33, 0.35). In contrast, the type 2 device exhibited a turn-on voltage of 6 V and a maximum brightness of 12866 cd •m−2. It exhibited a maximum luminous efficiency of 5.58 cd •A−1, an external quantum efficiency of 2.61%, and a power efficiency of 2.58 lm •W−1 with the CIE coordinates (0.31, 0.33).
目次 Table of Contents
摘要 i
目錄 viii
圖次 xiii
第一章 緒論 1
1.1前言 1
1.2有機發光二極體簡介 2
1.3有機發光二極體OLED和PLED之比較 4
1.3.1設備方面 4
1.3.2製程方面 4
1.3.3材料方面 5
1.3.4元件特性 5
1.4有機電激發光元件材料介紹 5
1.4.1陽極 5
1.4.2電洞注入層材料 6
1.4.3高分子發光材料 6
1.4.4 主體發光層材料 10
1.4.5客發光體材料 10
1.4.6 電子注入層材料 11
1.4.7 陰極 12
1.5有機白光發光元件的方式 12
1.5.1 單一發光層(Single emissive layer)白光元件 12
1.5.2 多層發光層(multiple emissive layer)白光元件 14
1.6 OLED全彩化的技術 16
1.6.1 RGB像素有效獨立發光 16
1.6.2 藍光背光源+發光色轉換層模式(CCM) 16
1.6.3 白光源+彩色濾光片模式 17
1.7量子效率 18
1.8有機電激發光元件的色彩鑑定 18
1.8.1色彩學原理 18
1.8.2 CIE1931 色座標 20
1-9參考文獻 22
第二章 基本理論與研究動機 24
2.1有機發光二極體原理 24
2.2有機電激發光之能量轉移機制 26
2.2.1 輻射能量轉移 27
2.2.2 非放射能量轉移 27
2.3濃度淬熄效應 29
2.4光硬化劑成分解析 30
2.4.1 光起始劑 30
2.4.2光聚合反應原理 30
2.4.3 SU8光阻劑之光聚合反應機制 31
2.5光致變色系統 32
2.6酸鹼反應理論 33
2.6.1 阿瑞尼士學說 33
2.6.2 布忍斯特-羅瑞學說 33
2.6.3路易士酸鹼學說 34
2.7光酸反應機制 34
2.8光色薄膜轉換原理 35
2-9研究動機 36
2-10研究架構 39
2-11參考文獻 40
第三章 實驗器材及藥品 41
3.1紫外與可見光光譜儀(UV-Vis Spectrometer) 41
3.2螢光光譜儀(Fluorescence spectrometer,PL) 42
3.3光電子光譜分析儀(PESA,Photo-electron spectroscopy in air) 43
3.4表面輪廓儀(Surface Profiler) 44
3.5有機電激發光元件光電特性量測系統 45
3.6核磁共振光譜儀(nuclear magnetic resonance,NMR) 46
3.7傅利葉轉換式質譜儀(Fourier-transfer mass spectrometry,FT-MS spectrometry) 47
3.8飛行時間式電荷傳輸特性量測系統(Time-of-Flight System,TOF) 48
3.9偏光顯微鏡(Polarized Optical Microscopy,POM) 49
3.10熱重量分析儀 (TGA) 50
3.11微差掃瞄熱卡計(DSC) 51
3.12 UV-A曝光機 53
3.13旋轉塗佈機(Spin Coater) 53
3.14磁式旋轉加熱盤(Hot plate) 54
3.15超音波振盪器(Ultrasonic oscillator) 54
3.16紫外臭氧清洗機 (UVO cleaner) 55
3.17手套箱(Glove Box) 55
3.18熱蒸鍍機(Thermal Evaporator) 55
3.19實驗材料 56
第四章有機發深藍光高分子材料合成與材料分析之研究 56
4.1簡介 56
4.2研究背景、目的及研究方法: 58
4.3實驗材料製備流程 64
4.3.1藍光主體及電洞傳輸材料製備流程 64
4.3.2 藍光高分子及藍光客體製備流程 65
4.3.3 藍光單體合成 66
4.3.4 電洞傳輸材料合成 68
4.3.5 藍光客體合成 72
4.4藍光高分子合成 76
4.5元件 77
4.5.1 元件製作流程 77
4.5.2 基本元件 79
4.5.3 HOST-GUEST電激發光元件 79
4.6結果與討論 80
4.6.1 材料分析 80
4.6.2 材料光學分析(UV-Vis & PL) 88
4.7元件量測 91
4.7.1 HOST-GUEST電激發光元件 92
4.8結論 94
4.9參考文獻 95
第五章白光LED 搭配螢光色轉換層製備全彩顯示器之研究 98
5.1簡介 98
5.2實驗設計 98
5.3實驗 99
5.3.1 發藍光螢光材料BPVPDA之合成 99
5.3.2 有機發螢光薄膜製備 100
5.4結果與討論 100
5.4.1 彩色濾光片分析 100
5.4.2 有機發螢光材料 ER53、C545T、TBPE與BPVPDA之材料分析 101
5.5參考文獻 108
第六章利用光酸誘導質子化法製備可調變式光源 111
6.1簡介 111
6.2實驗設計 112
6.3實驗與藥品 113
6.3.1 有機發綠光螢光材料C545T 113
6.3.2 SU8 (負型光阻劑) 114
6.3.3藍光PLED 製備 115
6.3.4 有機發螢光薄膜製備 115
6.4結果與討論 116
6.5參考文獻 124
第七章 新穎發藍光材料與利用質子化製備可調變式光源應 126
7.1簡介 126
7.2實驗 129
7.2.1 實驗材料與儀器 129
7.2.2 白光有機高分子發光元件製備 (WPLEDs) 129
7.3結果與討論 130
7.3.1. 三原色單一發光層白光元件之研究 130
7.3.2.有機發綠光材料C545T之電化學分析 131
7.3.3.有機發綠光材料C545T在不同極性溶液下之物理分析 132
7.3.4 有機發綠光材料C545T質子化與非質子化之特性分析 138
7.3.5三原色與互補色之單一發光層白光元件分析 141
7.3.6三原色與互補色之單一發光層白光元件色穩定度分析 146
7.4結論 149
7.5參考文獻 150
第八章 總結 153
參考文獻 References
[1].M.Pope,and P.J.Mangante,Chem.Phys.38,2042(1963)
[2].C.W.Tang,and S.A.Vanslyke,Appl.Phys.Lett.51,913(1987).
[3].J.H.Burroughes,D.D.C.Bradley,A.R.Brown,R.N.Marks,K.Mackay,R.H. Friend,P.L.Burns,and A.B.Holmes,Nature.347.539
(1990).
[4].N.C.Greenham,S.C.Moratti,D.D.C.Bradley,R.H.Friend,and A.B.Holmes, Nature.365,628(1993).
[5].Y.Yang,E.Westerweele,C.Zhang,P.Smith,and A.J.Heeger,Appl.Phys.Lett. 77,694(1995).
[6].A.Kraft,A.Grimsdale,and A.B.Holmes,Angew.Chem.Int.Ed.37,402(1998).
[7].G.Gustafson,Y.Cao,Traecy,G.M.F.Klavetter,N.Colaneri,and A.J.Heeger, Nature 357,477(1992).
[8].J.H.Lee,C.L.Huang,C.H.Hsiao,M.K.Leung,C.C.Yang,and C.C.Chao,Appl. Phys.Lett.94,223301(2009).
[9].C.W.Tang,and S.A.VanSlyke,Appl.Phys.Lett.51,913(1987).
[10].T.Forster,Ann.Phys.6,55(1948).
[11].L.Dexter,and J.Chem.Phys.21,836(1953).
[12].K.Sugiyama,D.Yoshimura,T Miyamae,T.Miyazaki,H.Ishii,Y.Ouchi,and K. Seki,Appl.Phys.83,4928(1998).
[13].M.Suzuki,S. Tokito,M. Kamachi,K.Suirane and F.Sato,J.Photopolymer Science and Tachnology.16,309(2003).
[14].H.A.A.Attar,A.P.Mpnkman,M.Tavasli,S.Bettington and M.R.Bryce,Appl.Phys.Lett.86,121101(2004).
[15].J,Yang,J.Shen,J.Appl.Phys.84,2105(1998).
[16].J.Kido,M.Kimura,K.Nagai,Science 267,1332(1995).
[17].Y.Xu,J.Peng,Y.Mo,Q.Hou and Y.Cao Appl.Phys.Lett.86,163402(2005)
[18].G.Li,and J.Shinar,Appl.Phys.83,5359(2003).
[19].V.Bulovic,P.E.Burrows,S.R.Forrest,“Molecular Organic Light-Emitting Devices",Semiconductors and Semimetals,64,
255-306 (2000).
[20].Fox,J.L.; Chen,C.H.U.S.Patent 4 736 032, Inoe ( 1988).
[21].T.Nakatani,K.Japan Patent 6 009 952,1994.Ito,J.Japan Patent 7 166 160,(1995).
[22].C.W.Tang and S.A.Van Slyke,Appl.Phys.Lett.,51,913(1987).
[23].Meng-Ting Lee,Chia-Kuo Yen,Wen-Ping YangHsian-Hung Chen, Chi-Hung Liao, Chih-Hung Tsai,and Chin
H.Chen,ORGANIC LETTERS.Vol.6,No.8 1241-1244(2004).
[24].陳金鑫、黃孝文〝OLED 有機電激發光材料與元件"五南圖書(台灣、台北,2005)p.113~p.133.
[25].P.E.Burrows,G.Gu,V.Bluović ,Z.Shen,S.R.Forrest,and M.E.Thimpson,“Achieving Full-Color Organic Light-Emitting Devices
for Lightweight, Flat-PanelDisplay”, IEEE Transactions on ElectronDevice, Vol. 44, No. 8, p1188,(1997).
[26] Kido,J.,Kimura,M.andNagai,K.,"MultilayerWhite-Light-Emitting Organice ElectroluminescentDevice", Science, 267, 1332-
1334 (1995).
[27].Seizo Miyata and Hari Singh Nalwa (Editor), Organic Electroluminescent Materials andDevices, p335-358,The
Netherlands (1997).
[28].劉佳明,“Full Color Display From White OLED And Color Filters”工研院材料所報告.
[29].林國森,"有機發光二極體有機材料簡介"電子與材料第8期.
[30].鄭培毓,“OLED 全彩化技術暨相關專利發展”光連雙月刊第39期05,(2002).
[31].S.W.Lin,C.A Huang,J.H Lee,and Y.Chang,Thin Solid Films,453, 312,(2004).
[32].M.Pope, and P. J. Mangante, Chem. Phys. 38, 2042(1963)
[33].C.W. Tang, and S. A. Vanslyke, Appl. Phys. Lett. 51, 913(1987).
[34].J.H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes,
Nature 347, 539(1990).
[35].N.C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature 365, 628(1993).
[36].Y.Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, Appl. Phys. Lett. 77, 694(1995).
[37].A. Kraft, A. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed. 37, 402(1998).
[38].G. Gustafson, Y. Cao, Traecy, G. M. F. Klavetter, N. Colaneri, and A. J. Heeger, Nature 357, 477(1992).
[39].J. H. Lee, C. L. Huang, C. H. Hsiao, M. K. Leung, C. C. Yang, and C. C. Chao, Appl. Phys. Lett. 94, 223301 (2009).
[40].C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[41].T. Forster, Ann. Phys. 6, 55(1948).
[42].L. Dexter, and J. Chem. Phys. 21, 836(1953).
[43].K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H.Ishii, Y. Ouchi, and K. Seki, Appl. Phys. 83, 4928(1998).
[44].X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai, and S. He, Appl. Phys. Lett. 91, 221112(2007).
[45].Y. Yang, S. Chang, J. Bharathan, J. Liu, and J. Mater. J. Mater. Sci. Mater. Electron. 11, 89(2000).
[46].J. W. Park, Y. H. Kim, S. Y. Jung, K. N. Byeon, S. H. Jang, S. K. Lee, S. C. Shin, and S. K. Kwon, Thin Solid Films 516, 8381
(2008).
[47].Z. Zhao, J. H. Li, P. Lu, and Y. Yang, Adv. Funct. Mater. 17, 2203(2007).
[48].P. T. Huang, C. W. Chou, M. Y. Chang, W. Y. Huang, C. C. Lee, Y. K. Han, and S. W. Liu, J. Chin. Chem. Soc. 58, 326
(2011).
[49].S. Tang, W. Li, F. Shen, D. Liu, B. Yang, and Y. Ma, J. Mater. Chem. 22, 4401(2012).
[50].何基任,應用於質子交換膜之磺酸化聚芳香醚高分子,國立中山大學光電工程學系碩士論文(2011).
[51].阮凡軒,新穎雙酚單體合成聚芳香醚高分子在軟性基板上之製備與特性研究,國立中山大學光電工程學系碩士論文(2011).
[52].莊勳豐,低能隙噻吩共聚高分子之合成及其光電特性研究,國立中山大學光電工程學系碩士論文(2011).
[53].M. H. Ho, Y. S. Wu, S. W. Wen, M. T Lee, and T. M. Chen, Appl. Phys. Lett. 89, 252903 (2006).
[54].S. W. Wen, M. T Lee, and Chin H. Chen, J. of Display Technology 1, 1 (2005).
[55].K. H. Lee, J. K. Park, J. H. Seo, S. W. Park, Y. S. Kim, Y. K. Kim, and S. S. Yoon, J. Mater. Chem. 21, 13640 (2011).
[56].C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C. S. Lee, and S. T. Lee, J. Mater. Chem.
20, 1560 (2010).
[57].C. Bian, G. Jiang, H. Tong, Y. Cheng, Z. Xie, L. Wang, X. Jing, and F. Wang, JOURNAL OF POLYMER SCIENCE PART A:
POLYMER CHEMISTRY 49, 3911 (2011).
[58].S. Tang, W. Li, F. Shen, D. Liu, B. Yang, and Y. Ma, J. Mater. Chem. 22, 4401 (2012).
[59].Z. Y. Xia, Z. Y. Zhang, J. H. Su, Q. Zhang, K. M. Fung, M. K. Lam, K. F. Li, W. Y. Wong, K. W. Cheah, H. Tian, and C. H.
Chencd, J. Mater. Chem. 20, 3768 (2010).
[60].J. Kwak, Y. Y. Lyu, H. Lee, B. Choi, K. Char, and C, Lee, J. Mater. Chem. 22, 6351 (2012).
[61].J. Shi, and C. W. Tang, Appl. Phys. Lett. 80, 17 (2002).
[62].S. Gong , Q. Fu , Q. Wang , C. Yang , C. Zhong , J. Qin ,and D. Ma, Adv. Mater. 23, 4956 (2011).
[63].M. H. Ho, Y. S. Wu, S. W. Wen, and T. M. Chen, Appl. Phys. Lett. 91, 083515 (2007).
[64].I. Cho, S. H. Kim, J. H. Kim, S. Park, and S. Y. Park, J. Mater. Chem. 22,123 (2012).
[65].J. Wan, C. J. Zheng, M. K. Fung, X. K. Liu, C. S. Lee, and X. H. Zhang, J. Mater. Chem. 22, 4502 (2012).
[66].Y. Y. Lyu, J. Kwak, O. Kwon, S. H. Lee, D. Kim, C. Lee, and K. Char, Adv. Mater. 20, 2720 (2008).
[67].C. Yang, X. Zhang, H. You, L. Zhu, L. Chen, L. Zhu, Y. Tao, D. Ma, Z. Shuai, and J. Qin, Adv. Funct. Mater. 17, 651 (2007).
[68].M. T. Lee, C. H. Liao, C. H. Tsai, and C. H. Chen, Adv. Mater. 17, 2493(2005).
[69]S. J. Lee, J. S. Park, K. J. Yoon, Y. I. Kim, S. H. Jin, S. K. Kang, Y. S. Gal, S. Kang, J. Y. Lee, J. W. Kang, S. H. Lee, H. D.
Park, and J. J. Kim, Adv. Funct. Mater. 18, 3922 (2008).
[70].J. Lee, J. I. Lee, J. Y. Lee, amd H. Y. Chu, Synth. Met. 159,1956 (2009).
[71].K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, Org. Electron. 10,170 (2009).
[72].T. Zheng, and W. C. H. Choy, Adv. Funct. Mater. 20, 648 (2010).
[73].K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S. Yook, J. Y. Lee, and S. S. Yoon, Adv. Funct. Mater. 20, 1345
(2010).
[74].M. C. Gather, A. Köhnen, and K. Meerholz, Adv. Mater. 23, 233(2011).
[75].L. Duan, D. Zhang , K. Wu, X. Huang, L. Wang, and Y. Qiu, Adv. Funct. Mater. 21, 3540(2011).
[76].A. Chaskar, H. F. Chen, and K. T. Wong, Adv. Mater. 23,3876 (2011).
[77].H. J. Song, J. Y. Lee, I. S. Song, D. K. Moon, and J. R. Haw, Journal of Industrial and Engineering Chemistry 17,352 (2011).
[78].J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, Adv. Mater. 18,114 (2006).
[79].H. C. Lin, C. M. Tsai, J. T. Lin, and K.R. J. Thomas, Synth. Met. 156,1155 (2006).
[80].Q. Niu, Y. Xu, J. Jiang, J. Peng, and Y. Cao, J. Lumin. 126,531 (2007).
[81].R. H. Lee, and H. F. Hsu, J. Appl. Polym. Sci. 106, 2863 (2007).
[82].J. S. Park, M. Song, S. H. Jin, J. W. Lee, C. W. Lee, and Y. S. Gal, Macromol. Chem. Phys. 210, 1572 (2009).
[83].Y. Lin, Z. K. Chen, T. L. Ye, Y. F. Dai, D. G. Mac, Z. Ma, Q. D. Liu, Y. Chen, Polymer 51,1270 (2010).
[84].L. Chen, B. Zhang, Y. Cheng, Z. Xie, L. Wang, X. Jing, and F. Wang, Adv. Funct. Mater. 20, 3143 (2010).
[85].A. K. Palai, S. P. Mishra, A. Kumar, R. Srivastava, M. N. Kamalasanan, and M. Patri, Eur. Polym. J. 46, 1940 (2010).
[86].Y. Zhang, L. L. Zhang, R. S. Wang, and X. M. Pan, J. Mol. Graphics Modell. 34, 46 (2012).
[87].A. Aydın, and I. Kaya, Electrochim. Acta 65,104 (2012).
[88].W. Huang et al., “Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display,” Opt. Laser
Technol. 42(1), 215–217 (2010).
[89].Y. D. Kim et al., “Synthesis,application and investigation of structurethermal stability relationships of thermally stable water-
soluble azo. naphthalene dyes for LCD red color filters,” Dyes Pigments 89(1),1–8 (2011).
[90].K. Tsuda, “Color filter for LCDs,” Displays 14(2),115–124 (1993).
[91].T. Zhang et al., “Deep blue light-emitting polymers with fluorinated backbone for enhanced color purity and efficiency,”
Polymer 53,1529–1534 (2012).
[92].R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[93].J. Choi et al., “Synthesis and characterization of some perylene dyes for dye-based LCD color filters,” Dyes Pigments 90(1),
82–88 (2011).
[94].K.Okumoto et al., “Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%,” Appl.
Phys. Lett. 89(6), 063504 (2006).
[95].X. Wu et al., “Multi-color display and its model for a white OLED combined with optical color filters,” Optik 117(8), 373–376
(2006).
[96].C.-H. Chang et al., “Enhancing color gamut of white OLED displays by using microcavity green pixels,” Org. Electron. 11(2),
247–254 (2010).
[97].M. Suzuki et al., “White light emission from polymer light-emitting devices based on blue and red phosphorescent polymers”
Photopolym. Sci. Technol. 16(2), 309–314 (2003).
[98].H. A. Al Attar et al., “White polymeric light-emitting diode based on a fluorene polymer/Ir complex blend system,” Appl. Phys.
Lett. 86(12),121101 (2005).
[99].H. Aziz et al., “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283(5409), 1900–
1902 (1999).
[100].J. Park, N. Suganuma, and Y. Kawakami, “Dual partial dye doping for chromaticity tuning and performance enhancement
of white OLEDs,” J.Display Technol. 4(1), 61–69 (2008).
[101].J. Li et al., “White polymer light emitting diodes with multi-layer device structure,” Synthetic Met. 159, 36–40 (2009).
[102].J. Kido et al., “White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped
with three fluorescent dyes,” Appl. Phys. Lett. 64(7), 815–817 (1994).
[103].S.H. Eom, “High efficiency blue and white phosphorescent organic light emitting devices,” p. 170, Ph.D. Thesis, University
of Florida (2010).
[104].C.H. Kim and J. Shinar, “Bright small molecular white organic lightemitting devices with two emission zones,” Appl. Phys.
Lett. 80(12), 2201–2203 (2002).
[105].R. H. Jordan et al., “White organic electroluminescence devices,” Appl.Phys. Lett. 68(9), 1192–1194 (1996).
[106].C. W. Ko and Y. T. Tao, “Bright white organic light-emitting diode,”Appl. Phys. Lett. 79(25), 4234–4236 (2001).
[107].J. Kido et al.,“White-light-emitting organic electroluminescent device using lanthanide complexes,” Jpn. J. Appl. Phys. 35,
394–396 (1996).
[108].N. Chopra et al., “High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host
architecture,” Appl.Phys. Lett. 97(3), 033304 (2010).
[109].Z. Zhao et al., “Fluorescent, carrier-trapping dopants for highly efficient single-layer poly fluorene LEDs,” Adv. Funct. Mater.
17(13),2203–2210(2007).
[110].W. Huang et al., “Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display,” Opt. Laser
Technol. 43(1),214–217(2011).
[111].T. Ishibashi et al., “Active matrix organic light emitting diode display based on ’Super Top Emission’ technology,” Jpn. J.
Appl. Phys. 45(5B),4392–4395 (2006).
[112].C.L. Lin et al., “Lifetime amelioration for an AMOLED pixel circuit byusing a novel AC driving scheme,” IEEE Trans.
Electron Dev.58(8),2652–2659 (2011)
[113].H.N. Chen et al., “Concentration effect of organic phosphor C545T pumped by InGaN blue LED,” in MRS International
Materials Research Conf., June 9–12 (2008).
[114].W. Huang et al., “Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display,” Opt. Laser
Technol. 42(1), 215–217(2010).
[115].S.A. Van Slyke; C.W. Tang, and L.C. Roberts, US 4,720,432 (1988)
[116].C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett.,51, 913.(1987)
[117].C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett.,65, 3610.(1989).
[118].R. J. Holmes, B. W. D'Andrade, S. R. Forrest, X. Ren, J. Li, and M. E.Thompson,Appl. Phys. Lett. 83, 3818 (2003)
[119].W. Helefrich and W. G. Schneider, J. Chem. Phys. 44, 2902 (1966).
[120].K. Okumoto, H. Kanno, Y. Hamaa, H. Takahashi and K. Shibata ,Appl.Phys.Lett.,89,063502.(2006)
[121].X. Guo, C.J. Qin, Y.X. CHENG, Z.Y. Xie, y.h. Geng, X.B. Jing, F.S WANG,L.X. Wang, Adv. Mater,21,3682 (2009)
[122].Y.Zhang, F.Huang, Y.Cheng, Y.Geng, L.Wang, D. Ma,X.Jing. F. Wang,Adv.Mater,17,2974 (2005).
[123].C. H. Chen, C.W. Tang, Appl. Phys . Lett ., Volume 79, Number 22 (2001)
[124].Y.S. Huang and J.H. Jou (Tsing-hua),Appl. Phys.Lett., 80, 2782.(2002)
[125].C.H. Kim, and J. Shinar (Ames Lab, Iowa Uni.) Appl.Phys.Lett.,80,.2201.(2002).
[126].R.H. Jordan, A. Dodabalapur, M. Strukelj ,and T.M.Miller (AT&T), Appl.Phys.Lett.,1, 68,1192.(1996).
[127].C. W. Ko and Y. T. Tao, Appl. Phys. Lett.,79,.4234. (2001).
[128].J. Kido, W. Ikeda, M. Kimura, and K. Nagai(YamagataUni), Jpn. J. Appl.Phys.35 (1996).
[129].S. W. Lin, C. A. Huang, J. H Lee, and Y. Chang , Thin Solid Films, 453,312.(2004).
[130].C. H. Chen and C. W. Tang, Appl. Phys. Lett. 79, 3711 (2001).
[131].M.Suzuki, S. Tokito, M. Kamachi, K.Suirane and F. Sato, J. Photopolymer Science and Tachnology.16,309(2003).
[132].P.T. Huang, C.W. Chou, M.Y. Chang, W.Y Huang, C.C Lee, Y.K. Han and S.W.Liu, J. Chinese Chem. Soc., 2011, 58, 326-
331.(2011)
[133].M.Y Chang ,Y.K Han,C.C Wu, S.C.Lin and W.Y. Huang, Journal of The Electrochemical Society;155(12);J345-J349.(2008)
[134].J. S. Park, B. R. Lee, E. Jeong, H.J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H.Y.Woo, S. O. Kim, and M. H. Song, Appl. Phys.
Leet. 99. 163305(2011).
[135].S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, Appl. Phys. Lett. 92,121108-1 (2008).
[136].K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim,Appl. Phys. Lett. 94, 071118-1
(2009).
[137].R. Meerhrim ,R. Nitsche, and K. Leo,Appl.Phys.Lett.93,043310(2008).
[138].S. N. Mohammad, J. Appl. Phys. 95, 4856 (2004).
[139].S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143309 (2008).
[140].T. Gunnlaugsson, A.P. Davis, J.E. O‟Brien, M. Glynn:Org.Lett.4,2449–2452 (2002).
[141].K. Rotkiewicz, Z.R. Grabowski,W. Rettig: Chem. Rev.103,3899–4032 (2003).
[142].S.A. Van Slyke, C.W. Tang, and L.C. Roberts; US 4 ,720,432 (1988) .
[143].C. W. Tang and S. A. Van Slyke: Appl. Phys. Lett.51, 913 (1987).
[144].C. W. Tang and S. A. Van Slyke: Appl. Phys. Lett.65,3610 (1989).
[145].M.T Lee, C.K Yen,W.P Yang,H.H Chen,C.H Liao.C.H Tsai,and C.H. Chen:Organic Letters.Vol.6 No. 8 ,1241-1244 (2004).
[146].K.Okumoto, H.Kanno, Y.Hamaa, H.Takahashi and K.Shibata: Appl. Phys.Lett.89, 063504 (2006).
[147].S. N. Mohammad: J. Appl. Phys. 95, 4856 (2004)..
[148].Y.S. Huang and J.H. Jou (Tsing-hua):Appl. Phys.Lett. 80. 2782 (2002).
[149].W.T Liu :A Tunable Emission Prepared By Novel Photo-induced Color-Change Materials, Department of Photonics,
National SunYat-Sen University (2008).
[150].C.H. Kim, and J. Shinar (Ames Lab, Iowa Uni.):Appl.Phys.Lett.80 ,2201 (2002).
[151].R.H. Jordan, A. Dodabalapur, M. Strukelj ,and T.M.Miller (AT&T):Appl.Phys. Lett.1, 68, 1192 (1996).
[152].C. W. Ko and Y. T. Tao: Appl. Phys. Lett.79 ,4234 (2001).
[153].P.T. Huang, C.W. Chou, M.Y. Chang, W.Y Huang, C.C Lee, Y.K. Han and S.W.Liu: J. Chinese Chem. Soc. 58, 326-331
(2011).
[154].S. W. Lin, C. A. Huang, J. H Lee, and Y. Chang : Thin Solid Films.453 312 (2004).
[155].M.Y Chang ,Y.K Han,C.C Wu, S.C.Lin and W.Y. Huang: Journal of The Electrochemical Society.155(12) ,J345-J349 (2008).
[156].J,Yang,J.Shen:J.Appl.Phys.84,2105 (1988).
[157].J.Kido, M.Kimura ,K.Nagai:Science 267,1332 (1995).
[158].Y.Xu, J. Peng, Y. Mo, Q. Hou and Y. Cao: Appl. Phys. Lett.86,163402 (2005).
[159].V.V.Grushin, N.Herron ,D.D. Le Cloux ,W.J.Marshall, V.A. Petrov, and Y. Wang: Chem Commun,1494 (2001).
[160].C. H. Chen, C.W. Tang: Appl. Phys . Lett . Volume 79 Number 22 (2001)
[161].G. Li, and J. Shinar: Appl. Phys.83,5359 (2003).
[162].M. Vasilopoulou , D. Georgiadou, G. Pistolis, and P. Argitis : Adv. Funct.Mater. 17, 3477–3485 (2007).
[163].J. Kido: Organic Electroluminescence Material and Display, Japan, Chap17 (2001).
[164].J. S. Park, B. R. Lee, E. Jeong, H.J. Lee, J. M. Lee, J. S. Kim, J. Y. Kim, H. Y.Woo, S. O. Kim, and M. H. Song: Appl. Phys.
Leet. 99 (2011).
[165].S. J. An, J. H. Chae, G. C. Yi, and G. H. Park: Appl. Phys. Lett. 92,121108-1 (2008).
[166].K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim: Appl. Phys. Lett.94, 071118-1
(2009).
[167].S. N. Mohammad:J. Appl. Phys. 95,4856 (2004).
[168].R. Meerhrim ,R. Nitsche, and K. Leo:Appl.Phys.Lett.93,043310 (2008).
[169].S. C. Allen and A. J. Steckl: Appl. Phys. Lett. 92, 143309 (2008).
[170].W.T. Liu and W.Y. Huang, ECS J. Solid State Sci. Technol., Volume 2,Issue 1, Pages R16-R20 (2013).
[171].W.T. Liu and W.Y. Huang, Optical Engineering 51(10),104 (2012)
[172].M.S. Jhang and W.Y. Huang , Synthesis Of Novel Blue-emitting Poly(arylene ether)s with Application to Light emitting
diodes, Department of Photonics National Sun Yat-sen university Master Thesis Dissertation(2012).
[173].S. C. Allen and A. J. Steckl, Appl. Phys. Lett. 92, 143 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.190.144
論文開放下載的時間是 校外不公開

Your IP address is 3.15.190.144
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code