Responsive image
博碩士論文 etd-0616113-170149 詳細資訊
Title page for etd-0616113-170149
論文名稱
Title
利用廢棄物質為催化劑製作生質柴油之研究
Synthesis of biodiesel using waste material as catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-17
繳交日期
Date of Submission
2013-07-16
關鍵字
Keywords
生質柴油、微波系統、蛋殼、轉酯化反應、痲瘋樹油、廢食用油、牡蠣殼
Microwave, Oyster shell, Egg shell, Transesterification, Biodiesel, Jatropha oil, Waste cooking oil
統計
Statistics
本論文已被瀏覽 5677 次,被下載 1294
The thesis/dissertation has been browsed 5677 times, has been downloaded 1294 times.
中文摘要
本研究以廢食用油與痲瘋樹油作為製作生質柴油之原料油,探討催化劑濃度不同、反應時間、反應溫度、醇油比及催化劑種類對生質柴油產率之影響,且使用微波加熱系統進行轉酯化反應,以縮短反應時間。本研究以廢棄物質蛋殼及牡蠣殼破碎成細粒粉末狀,置於高溫爐以1000℃停留時間2小時進行煅燒,並以XRD、FTIR及ESEM儀器進行拍攝,觀察出經煅燒後成分及樣貌之改變,作為生質柴油之催化劑使用。實驗結果可知,以煅燒蛋殼作為催化劑,痲瘋樹油作為原料油,在操作條件設定為催化劑量5 wt%、加熱反應時間165 min、反應溫度為65 ℃及醇油比9:1,可獲得最佳產率為91.7%。相較煅燒蛋殼,以煅燒牡蠣殼作為催化劑,催化劑添加量提升至6 wt%、加熱反應時間180 min、反應溫度為65 ℃及醇油比9:1,獲得產率為91.1%,可得知使用蛋殼較牡蠣殼所獲得產率較佳。比較廢食用油與痲瘋樹油為原料油,操作條件為蛋殼催化劑添加量5 wt%、加熱反應時間165 min、反應溫度為65 ℃及醇油比9:1,獲得產率分別為87.8%及91.7%,以痲瘋樹油作為原料油之效果優於廢食用油。
Abstract
This study used waste cooking oil and jatropha oil as the raw materials for investigating effects of catalyst concentration, reaction time, reaction temperature, methanol-to-oil ratio, and catalyst types on biodiesel yield. The study speed up the transesterification and make the short reaction time under microwave conditions. This study investigated crushing the dried from eggshell and oystershell of wastes, calcination was performed in the muffle furnace at temperatures 1000 °C for 2 h. The textural structure of calcined eggshell and oystershell can be observed from the X-ray Diffractometer (XRD), Fourier Transform Infrared Spectrometry (FTIR) and Environment Scanning Electron Micrograph (ESEM) images. The experimental results revealed that using calcined eggshell as catalyst, and jatropha oil used as the raw material, the best operational condition (yield 91.7%) addition of 5 wt% eggshell catalysts (calcined at 1000 °C), the reaction time was 165 min, reaction temperature was 65 ℃, and the methanol-to-oil ratio was 9:1. Comparing the eggshell as catalyst, operational condition addition of 6 wt% oystershell catalysts, the reaction time was 180 min, reaction temperature was 65 ℃, and the methanol-to-oil ratio was 9:1. The results indicated that the catalysts derived from eggshells showed yield better than oystershell for biodiesel production. Comparison of waste cooking oil and jatropha oil as the raw materials, the operational condition addition of 5 wt% eggshell catalysts, the reaction time was 165 min, reaction temperature was 65 ℃, and the methanol-to-oil ratio was 9:1, the yield 87.8% and 91.7%, respectively. This data indicates that jatropha oil is better than waste cooking oil for biodiesel production.
目次 Table of Contents
謝 誌...............................................................................................i
摘 要...............................................................................................ii
目 錄...............................................................................................iv
圖 次...............................................................................................vii
表 次...............................................................................................x
第一章 前言.....................................................................................1
1-1 研究緣起....................................................................................1
1-2 研究目標....................................................................................3
第二章 文獻回顧 ..............................................................................4
2-1 國際能源現況.............................................................................4
2-2 生質柴油起源與特性...................................................................8
2-2-1 生質柴油起源..........................................................................8
2-2-2 生質柴油成長趨勢....................................................................9
2-2-3 生質柴油之物化性質................................................................11
2-3 生質柴油之原料.........................................................................14
2-3-1 廢食用油................................................................................14
2-3-2 痲瘋樹油................................................................................15
2-3-3 藻油.......................................................................................17
2-4 生質柴油製作之方法...................................................................19
2-5 生質柴油催化劑之種類................................................................24
2-5-1 酸性催化劑(Acid Catalyst)...................................................24
2-5-2 鹼性催化劑(Alkali Catalyst)..................................................25
2-5-3 酵素催化劑(Enzyme catalyst)..............................................26
2-6 蛋殼與牡蠣殼之價值...................................................................28
2-6-1國內養雞畜牧業之現況..............................................................28
2-6-2 蛋殼構造與成分.......................................................................30
2-6-3 國內養殖蚵仔之現況.................................................................31
2-7 微波系統....................................................................................34
第三章 研究方法與流程.....................................................................37
3-1 研究架構與流程..........................................................................37
3-2 生質柴油製作材料與設備.............................................................39
3-2-1 實驗材料與藥品.......................................................................39
3-2-2實驗設備..................................................................................40
3-3蛋殼及蚵殼物化性質檢測..............................................................42
3-3-1廢棄物質之前處理.....................................................................42
3-3-2 煅燒後pH值與粒徑檢測.............................................................43
3-3-3 環境掃描式電子顯微鏡(ESEM)檢測結晶與成份............................43
3-3-4過錳酸鉀滴定法定量氧化鈣含量..................................................43
3-4 油品酸價及皂化價測定.................................................................45
3-4-1皂化價之測定............................................................................45
3-4-2 酸價之測定..............................................................................47
3-5 生質柴油製作流程與方法.............................................................49
3-6 生質柴油產率分析.......................................................................51
第四章 結果與討論..........................................................................55
4-1 蛋殼及牡蠣殼之性質探討.............................................................55
4-1-1 蛋殼及牡蠣殼XRD分析..............................................................55
4-1-2 蛋殼及牡蠣殼FTIR分析..............................................................58
4-1-3 蛋殼及牡蠣殼結構與成份...........................................................61
4-2 以蛋殼催化廢食用油在不同反應參數對生質柴油產率之影響.............67
4-2-1 催化劑(蛋殼)濃度對生質柴油(廢食用油)產率之影響.......................67
4-2-2 加熱時間變化對生質柴油(廢食用油)產率之影響............................69
4-2-3微波溫度變化對生質柴油(廢食用油)產率之影響.............................70
4-2-4 醇油比對生質柴油(廢食用油)產率之影響......................................72
4-3 以蛋殼催化痲瘋樹油不同反應參數對生質柴油產率之影響.................75
4-3-1 催化劑(蛋殼)濃度對生質柴油(痲瘋樹油)產率之影響.......................75
4-3-2 加熱時間變化對生質柴油(痲瘋樹油)產率之影響............................76
4-3-3微波溫度變化對生質柴油(痲瘋樹油)產率之影響.............................78
4-3-4 醇油比對生質柴油(痲瘋樹油)產率之影響......................................80
4-4 以牡蠣殼催化廢食用油不同反應參數對生質柴油產率之影響..............82
4-4-1催化劑(牡蠣殼)濃度對生質柴油(廢食用油)產率之影響.....................82
4-4-2 加熱時間變化對生質柴油(廢食用油)產率之影響............................84
4-4-3微波溫度變化對生質柴油(廢食用油)產率之影響.............................85
4-4-4 醇油比對生質柴油(廢食用油)產率之影響......................................87
4-5 以牡蠣殼催化痲瘋樹油在不同反應參數對生質柴油產率影響..............90
4-5-1 催化劑(牡蠣殼)濃度對生質柴油(痲瘋樹油)產率之影響....................90
4-5-2 加熱時間變化對生質柴油(痲瘋樹油)產率之影響.............................91
4-5-3微波溫度變化對生質柴油(痲瘋樹油)產率之影響..............................93
4-5-4 醇油比對生質柴油(痲瘋樹油)產率之影響......................................95
4-6 比較油品對生質柴油產率影響........................................................97
4-6-1 反應時間對油品產率之影響........................................................97
4-6-2 反應溫度對油品產率之影響........................................................99
4-6-3 醇油莫耳比對油品產率之影響....................................................101
4-6-4 以廢食用油與痲瘋樹油作為原料油最佳產率之比較.......................103
第五章 結論與建議............................................................................107
5-1 結論...........................................................................................107
5-2 建議...........................................................................................108
參考文獻..........................................................................................109
參考文獻 References
Agarwal, A.K., Das, L.M., 2001. Biodiesel development and characterization for use as a fuel in compression ignition engines. Journal of Engineering for Gas Turbines and Power 123 , pp. 440 – 447
Ahmad, A.L., Mat Yasin, N.H., Derek, C.J.C., Lim, J.K., 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews 15, pp. 584–593.
Al-Widyan, M.I., Tashtoush, G., Abu-Qudais, M., 2002. Utilization of Ethyl Ester of Waste Vegetable Oils as Fuel in Diesel Engines. Fuel Processing Technology 76, pp. 91 – 103.
Asghar, M.D., Mohammad, G.,2012. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Processing Technology 97, pp. 45–51.
Atadashi, I.M., Aroua, M.K., Aziz, A.A., 2011. Biodiesel separation and purification: a review. Renewable Energy 36 ,pp. 437 – 443.
Balakrishnan, K., Olutoye, M.A., Hameed, B.H., 2013. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst. Bioresource Technology 128, pp. 788–791.
Balat, M., 2011. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conversion and Management 52, pp. 1479 – 1492.
Balat, M., Balat, H., 2010. Progress in biodiesel processing. Applied Energy 87, pp. 1815–1835.
Bankovi´c-Ili´c, I.B., Stamenkovi´c , O.S., Veljkovi´c, V.B., 2012. Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews 16, pp.3621 – 3647.
Barnwal, B.K., Sharma, M.P., 2005. Prospects of biodiesel production from vegetable oils in India. Renewable and Sustainable Energy Reviews 9, pp. 363–378.
Birla, A., Singh, B., Upadhyay, S.N., Sharma, Y.C., 2012. Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Bioresource Technology 106, pp. 95–100.
Cetinkaya M., Karaosmanoglu F., 2004. Optimisation of base-catalysed transesterification reaction of used cooking oil. Energy Fuels 18. pp.1888 − 1895.
Chen, K.S., Lin, Y.C., Hsu, K.H., Wang, H.K., 2012. Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38, pp.151 – 156.
Demirbas, A., 2007. Recent developments in biodiesel fuels. International Journal of Green Energy 4, pp.15 – 26.
Demirbas. A., 2009. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manage 50, pp.923 – 927.
Di Serio, M., Tesser, R., Dimiccoli, M., Cammarota, F., Nastasi, M., Santacesaria, E., 2005. Synthesis of biodiesel via homogeneous lewis acid catalyst. Journal of Molecular Catalysis A: Chemical 239, pp. 111–115.
Ding, J., He, B., Li, J., 2011. Cation ion-exchange resin/polyethersulfone hybrid catalytic membrane for biodiesel production. J. Biobased Mater. Biol, 5 , pp. 85–91.
Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M., 2004. Energy Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Fuels 18. 77 − 83.
Eevera, T., Rajendran, K., Saradha, S., 2009. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy 34, 762–765.
El Sherbiny, S.A., Refaat, A.A., El Sheltawy, S.T., 2010. Production of biodiesel using the microwave technique. Journal of Advanced Research 1, pp. 309–314.
Elsheikh, Y.A., Man, Z., Bustam, M.A., Yusup, S., Wilfred, C.D., 2011. Brønsted imidazo- lium ionic liquids: synthesis and comparison of their catalytic activities as pre-catalyst for biodiesel production through two stage process. Energy Conversion and Management 52, pp.804 – 809.
Encinar, J.M., González, J.F., Rodríguez, J.J., Tejedor, A., 2002. Biodiesel fuels from vegetable oils: transesterification of cynara cardunculus L. oils with ethanol. Energy Fuels 16, pp. 443–450.
Engin, B., Demirtas, H., Eken, M., 2006. Temperature effects on egg shells investigated by XRD, IR and ESR techniques. Radiation Physics and Chemistry 75, pp. 268–277.
European Biodiesel Board , 2012. The EU biodiesel industry production by country statistics.
Fatih Demirbas, M., 2010. Biofuels from algae for sustainable development. Applied Energy 88, pp. 3473–3480.
Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 92, pp.405  416.
Galeno, G., Minutillo, M., Perna, A., 2011. From waste to electricity through integrated plasmagaification / fuel cell (IPGFC) system. International Journal of Hydrogen Energy 36, pp.1692 – 1701.
Gerhard Knothe et al., 2005. Fuel Property of Biodiesel—Cetane Number. The Biodiesel Handbook AOCS Press.
Giovanni, V.D.G., Laurens, R., 2008. The jatropha energy system:an integrated approach to decentralized and sustainable energy production at the village level. Ingegneria Senza Frontiere.
Griffiths, M.J., Harrison, S.T.L., 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol 21, pp. 493–507.
Gryglewicz, S., 1999. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology 70, pp. 249–253.
Gui, J., Cong, X., Liu, D., Zhang, X., Hu, Z., Sun, Z., 2004. Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catalysis Com- munications 5, pp.473 – 477.
Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J., 2009. Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Processing Technology 90, pp. 1502–1514.
Hsiao, M.C., Lin, C.C., Chang, Y.H., 2011. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel 90, pp. 1963–1967.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54, pp. 621–663.
Jain, N., Kumar, A., Chauhan, S., Chauhan, S.M.S., 2005. Tetrahedron 61, pp.1015-1060.
Kafuku, G., Mbarawa, M., 2010. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 89, pp.2556 – 2560.
Karmakar A., Karmakar S., Mukherjee S. 2010. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology 101, pp. 7201–7210.
Kaushik, N., Kumar, K.,Kumar, S.,Kaushik, N., Roy, S., 2007. Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass and Bioenergy 31, pp. 497–502.
Koh, M.Y., Ghazi, T.I.M., 2011.,A review of biodiesel production from Jatropha curcas L. oil.Renewable and Sustainable Energy Reviews 15, pp. 2240–2251.
Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka,S., Hidaka, J., 2008. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87, pp. 2798 – 2806.
Leadbeater, N.E., Marco, M., 2002. Org. Lett. 4, pp.2973.
Leung, D.Y.C., Guo, Y., 2006. Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol 87, pp.883 – 890.
Leung, D.Y.C., Wu, X., Leung, M.K.H., 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87, pp. 1083–1095.
Lian, S., Li, H., Tang, J., Tong, D., Hu, C., 2012. Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel. Applied Energy 98, pp. 540–547.
Liang, X., Gao, S., Wu, H., Yang, J., 2009. Highly efficient procedure for the synthesis of biodiesel from soybean oil. Fuel Processing Technology 90, 701–704.
Lim, S., Teong, L.K., 2010. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews 14, pp. 938–954.
Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G., 2005. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res 44, pp. 5353–5363.
Ma, F., Clements, L.D., Hanna, M.A., 1998. The effects of catalyst, free fatty acidsand water on transesterification of beef tallow. Transactions of the American Society of Agricultural Engineers 41, pp.1261 – 1264.
Ma, F., Hanna, M.A., 1999. Biodiesel production: a review, BioresourceTechnology 70, pp.1 – 15.
Madhu, A., Garima, C.S.P. Chaurasia, K.S., 2012. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers 43, pp.89 – 94.
Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 14, pp. 217–232.
Meher, L.C., Sagar, V.D., Naik, S.N., 2006. Technical aspects of biodiesel production by transesterification-a review. Renewable and Sustainable Energy Reviews 10, pp. 248–268.
Murugesan, A., Umarani, C., Chinnusamy, T.R., Krishnan, M., Subramanian, R., Neduzchezhain, N., 2009. Production and analysis of bio-diesel from non-edible oils – a review. Renewable and Sustainable Energy Reviews 13 , pp. 825 – 834
Natarajan, G., Subramania, P. N., Khadhar, M.M.S.B., Narayanan, A., 2013. Utilization of a cost effective solid catalyst derived from natural white bivalve clam shell for transesterification of waste frying oil. Fuel Available online.
Ohno, H., 2005. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons: New Jersey.
Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., 2011. A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews 15, pp.639 – 647.
Pandey, V.C., Singh, K., Singh, J.S., Kumar, A., Singh, B., Singh, R.P., 2012. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy 16, pp.2870 – 2883.
Peng, B.X., Shu, Q., Wang, J.F., Wang, G.R., Wang, D.Z., Han, M.H., 2008. Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environmental Protection 86, pp.441 – 447.
Praful Nair, Singh, B., Upadhyay, S.N., Sharma,Y.C., 2012. Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst. Journal of Cleaner Production 29-30, pp.82–90.
Qureshi, Z.S., Deshmukh, K.M., Bhor, M.D., Bhanage, B.M., 2009. Bronsted acidic ionic liquid as an efficient and reusable catalyst for transesterification of [beta]- ketoesters. Catalysis Communications 10, pp.833 – 837.
Ramírez-Verduzco, L.F., Rodríguez-Rodríguez, J.E., Jaramillo-Jacob A.R., 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91, pp.102 – 111.
Roussy, G., Pearce, J.A., 1995. Foundations and Industrial Applications of Microwave and Radiofrequency Fields. Physical and Chemical Processes 10, 11, 12.
Schaafsma, A., I. Pakan, G.J.H., Hofstede, F.A.J., Muskiet, E., De Vries, P.J.F., 2000. Mineral, amino acid, and hormonal composition of chickn eggshell powder and the evaluation of its use in human nutrition. Poultry Sci 87, pp. 267-275.
Schumacher, L.G., Borglet, S.C., Fosseen, D., Goetz, W., Hires, W.G., 1996. Heavy-Duty Engine Exhaust Emission Test Using Methyl Ester Soybean Oil/Diesel Fuel Blends. Bioresource Technology 57, pp. 31 – 36.
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H., 1988. Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists’ Society 65, pp.1781  1786.
Seddon, K. R., Stark, A., Torres, M.J., 2000. Influence of chloride, water, andorganic solvents on the physical properties of ionic liquids. Pure Appl. Chemical 72, pp.2275 – 2287.
Shakinaz, A.E.S., Ahmed, A.R., Shakinaz, T.E.S., 2010. Production of biodiesel using the microwave technique. Journal of Advanced Research 1, pp.309– 314.
Sharma, Y.C., Singh, B., 2008. Development of biodiesel from karanja, a tree found in rural India. Fuel 87, pp.1740  1742.
Sharma, Y.C., Singh, B., 2009. Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews 19, pp.1646 – 1651.
Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G., 2007. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catalysis Communications 8, pp.2159  2165.
Simons, P.C.M., 1971. Ultrastructure of the hen eggshell and its physiological interpretation; Central Institute Poultry Research. Beekbergen. Communication 175.
Tang, Y., Meng, M., Zhang, J., Lu, Y., 2011. Efficient preparation of biodiesel from rapeseed oil over modified CaO. Applied Energy 88, pp. 2735–2739.
Taufiq-Yap, Y.H., Lee, H.V., Yunus, R., Juan, J.C., 2011. Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca–Mg mixed oxide catalyst: Effect of stoichiometric composition. Chemical Engineering Journal 178, pp.342–347
Thostenson, E.T., Chou, T.W., 1999. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing 30, pp.1055 – 1071
University of Idaho (Department of Biological and Agricultural Engineering, 1996. Biodegradability of Biodiesel in the Aquatic Environment. Development of Rapeseed Biodiesel for Use in High-speed Diesel Engines. Progress Report, pp.96 – 116.
Viriya-empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., Faungnawakij, K., 2010. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresource Technology 101, pp. 3765–3767.
Vyas, A.P., Subrahmanyam, N., Patel, P.A., 2009. Production of biodiesel through esterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88 , pp. 625–628.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S., 2006. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical 252, pp.107 – 112.
Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y., Shimada, Y., 2007. Enzymatic Production of Fatty Acid Methyl Esters by Hydrolysis of Acid Oil Followed by Esterification. Journal of the American Oil Chemists Society 84, pp.1015 – 1021.
Wei, Z., Xu, C., Li, B., 2009. Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology 100, pp.2883–2885.
Wu, Q., Chen, H., Han, M., Wang, D., Wang, J., 2007. Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Industrial & Engineering Chemistry Research 46, pp.7955 – 7960.
Yang, F.X., Su, Y.Q., Li, X.H., Zhang, Q., Sun, R.C., 2009. Preparation of biodiesel from Idesia polycarpa var Vestita fruit oil. Industrial Crops and Products 29, pp. 622–628.
Yap, Y., Lee, H., Hussein, M.R.Y., 2011. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass and Bioenergy 35, pp. 827–834.
Yoon, H., Park, S., Lee, K., Park, J., 2004. Oyster shell as substitute for aggregate in Mortar. Waste Management & Research 22, pp. 158-170.
Zabeti, M., Wan Daud, W.M.A., Aroua,M.K., 2009. Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology 90, pp. 770 – 777.
Zhang, H., Ding, J., Zhao, Z., 2012. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production. Bioresource Technology 123, pp.72–77.
Zhang, S., Zu, Y.G., Fu, Y.J., Luo M., Zhang, D.Y., 2010. Rapid microwave-assisted transesterification of yellow horn oil to biodieselusing a heteropolyacid solid catalyst. Thomas Efferth cBioresource Technology 101, pp.931 – 936.
Zhang, Y., Dube, M.A., McLean, D.D., Kates, M., 2003. Biodiesel production from waste cooking oil. 1. Process design and technological assessment. Bioresource Technology 89, pp.1 – 16.
Zhu, H., Wu, Z., Chen, Y., Zhang, P., Duan, S., Liu, X., Mao, Z.,2006. Preparation of Biodiesel Catalyzed by Solid Super Base of Calcium Oxide and Its Refining Process. Chinese Journal of Catalysis 27, pp. 391–396.
Zullaikah, S., Lai, C.C., Vali, S.R., Ju Y.H., 2005. A Two-step Acid-catalyzed Process for the Production of Biodiesel from Rice Bran Oil, Bioresource Technol 97, pp.1889 – 1896.
中油股份有限公司,2010,「高級柴油物質安全資料表」,油品行銷事業部。
呂錫民,2010,「台灣低碳能源結構淺談」,能源報導30-33。
廢棄物管理科,2009,「廢食用油回收再利用」,嘉義縣環境保護局。
李智傑,2008,「酸性觸媒在生質柴油製程之研究」,國立成功大學化學工程學系,碩士論文。
林福文,2008,「微波機械系統設備與製程發展近況」,食品工業專題報導第40卷7期。
經濟部能源局,2008,「酒精汽油生質柴油及再生油品之生產輸入摻配銷售業務管理辦法」,石油管理法第三十八條第三項。
經濟部能源局,2010,「石油煉製業與輸入業銷售國內車用柴油摻配酯類之比率實施期程範圍及方式」,石油管理法第三十八條之一第二項。
經濟部能源局,2012,「新及再生能源」,能源產業技術白皮書。
經濟部能源局,2013,「國際油價情勢分析年報」,經濟部能源局年報。
蔣本基、曾錦清、張怡怡、葉茂榮、蔡佳娟、陳郁文、傅耀宗,2005,「電漿氣化及廢棄物轉化能源之技術調查與評估」,行政院原子委員會委託研究計劃。
行政院環境保護署,2012,「全國事業廢棄物申報統計」,事業廢棄物申報及管理系統。
行政院農業委員會,2011,「100年農業統計年報-漁業生產量值」,行政院農業委員會統計室。
行政院農業委員會,2011,「100年農業統計年報-畜牧生產」,行政院農業委員會統計室。
謝志誠,2007,「生質柴油之品質與檢驗」,臺灣大學生物產業機電工程學系。
謝豪晃,1989,「探討蛋形成與蛋殼品質的問題」,飼料營養雜誌第9期,茂群峪畜牧網。
趙國評、楊素幸,2007,「淺談生質能」,林業研究專訊 14 No.3。
鄭加佑,2012,「氫氧混合氣注入柴油引擎燃燒室對節能與污染減量之研究」,國立中山大學環境工程研究所博士論文。
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用及環保。
陳家鐘,2005,「除草劑劑型簡介」,中華民國雜草學會會刊,第二十六卷,第二期。
高淑雲、吳純衡,2011,「煅燒牡蠣殼粉-安全、環保的天然抗菌物質」,農政與農情第230期。
黃培安、吳純衡,2010,「水產生技新「蠣」器」,科學發展第448期,第6 – 11頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code