Responsive image
博碩士論文 etd-0616113-181255 詳細資訊
Title page for etd-0616113-181255
論文名稱
Title
氧化鋅奈米針與二氧化鈦異質接面之備製與應用
Preparation and Applications of Zinc Oxide Nanotip and Titanium Oxide Heterojunction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-11
繳交日期
Date of Submission
2013-07-16
關鍵字
Keywords
異質接面、氧化鋅、二氧化鈦、光催化、生命週期
titanium oxide, heterojunction, zinc oxide, photocatalytic, lifetime
統計
Statistics
本論文已被瀏覽 5778 次,被下載 0
The thesis/dissertation has been browsed 5778 times, has been downloaded 0 times.
中文摘要
氧化鋅奈米針的光催化行為很低。為了改善此狀況,我們研究氧化鋅奈米針長在二氧化鈦膜上所形成的異質接面可以使生命週期增加和增大面積來加強光催化反應。這是因為二氧化鈦的快反應和氧化鋅的大結合能,改善了電子和電洞在價帶和導帶的轉換。
我們更進一步使用液相沉積法將氧化鋅奈米針長在二氧化鈦膜和氮氟共摻雜的二氧化鈦奈米顆粒上,形成異質接面。二氧化鈦膜有便宜、化性穩定、無害和在可見光範圍內不吸收的特性。因此希望藉由氮氟共摻雜來調整二氧化鈦的光吸收邊界,提高對光能量的吸收。
異質接面的優點如下:(1)改善帶電載子的分離(2)增加帶電載子的生命週期(3)增強到吸附基板的接面帶電載子的轉換效率。在此研究中,氧化鋅奈米針長在二氧化鈦膜和氮氟共摻雜的二氧化鈦奈米顆粒上,所形成的異質接面有較高的光催化行為。
Abstract
Photocatalytic activity of ZnO nanotip is low. To improve this condiction, ZnO nanotip growing on TiO2 film can form heterojunction which make life-time longer and enlarge the area to enhance the photocatalytic activity. This is due to the high reactivity of TiO2 and the large binding energy of ZnO, which improve the process of electron and hole transfer between the corresponding conduction and valence bands.
In conclusion, the heterostructure of ZnO nanotip/TiO2 film and ZnO nanotip/N-F co-doped TiO2 nanoparticle were prepared by aqueous solution deposition (ASD). TiO2 films are inexpensive, chemically stable and harmless, and have no absorption in the visible region. Therefore, N-F co-doped TiO2 nanoparticle is in order to adjust the titanium dioxide the light to absorb the boundary (optical absorption edge), hoping to enhance the absorption of photoenergy.
In this heterojunction configuration, several advantages can be obtained: (1) an improvement of charge separation (2) an increase in the lifetime of the charge carrier (3) an enhancement of the interfacial charge transfer efficiency to adsorbed substrate. In our research, heterojunction of ASD-ZnO nanotip on ASD-TiO2 thin film or ASD-N-F co-doped TiO2 nanoparticle show higher photocatalytic activity.
目次 Table of Contents
論文審定書 i
ACKNOWLEDGEMENT ii
摘 要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLE x
Chapter 1 1
Introduction 1
1.1 Background of photocatalysis 1
1.2 Photocatalysis 2
1.3 Semiconductor Photocatalysis 2
1.4 Mechanism of Photocatalysis 3
1.5 Properties and applications of TiO2 4
1.6 Properties and applications of ZnO 5
1.7 Preparations of TiO2 6
1.8 Preparations of ZnO 6
1.9 Advantages of aqueous solution dsposition (ASD) 7
1.10 Motivations of Heterojunction 8
Chapter 2 14
Experiments 14
2.1 ASD Deposition System 14
2.2 RF Sputtering 14
2.2 Substrate Cleaning Procedures 15
2.3 ZnO nucleation layer by RF Sputtering and ASD-ZnO nanotip 15
2.3.1 ZnO nucleation layer prepared with ZnO target by RF Sputtering 15
2.3.2 ASD-ZnO nanotip 16
2.4 ASD-TiO2 17
2.4.1 Preparation of (NH4)2TiF6 Solution 17
2.4.2 Preparation of H3BO3 Solution 18
2.4.3 ASD-TiO2 film 18
2.5 Characteristics 19
2.5.1 Physical Property 19
2.5.2 Optical Property 20
2.6 Photocatalytic Activity 20
Chapter 3 27
Results and discussion 27
3.1 Characteristics of ASD-ZnO nanotip/ZnO nucleation layer on XG Corning glass 28
3.1.1 ZnO nucleation layer 28
3.1.2 The length of ASD-ZnO nanotip at different annealing temperature 29
3.1.3 Micro PL of ASD-ZnO nanotip 29
3.1.4 Photocatalytic activity measurement of transmittance of ASD-ZnO nanotip 30
3.2 Characteristics of ASD-TiO2 film on XG Corning glass 30
3.2.1 The thickness of ASD-TiO2 film with different desposition time 30
3.2.2 Photocatalytic activity measurement of transmittance of ASD-TiO2 film 31
3.3 Characteristics of ASD-ZnO nanotip/ZnO nucleation layer/ASD-TiO2 film on XG Corning glass at different annealing temperature 32
3.3.1 ASD-ZnO nanotip/ZnO nucleation layer/ASD-TiO2 film at different annealing temperature 32
3.3.2 Micro PL pattern of ASD-ZnO nanotip on ASD-TiO2 film at the annealing temperatures of 100oC ~ 400oC in N2O for 1 hr 33
3.3.3 Photocatalytic activity measurement of transmittance of ASD-ZnO nanotip on ASD-TiO2 film at the annealing temperatures of 100oC ~ 400oC in N2O for 1 hr 33
3.4 Characteristics of ASD-ZnO nanotip/ZnO nucleation layer/ASD-TiO2 film on XG Corning glass with different desposition time 34
3.4.1 ASD-ZnO nanotip/ZnO nucleation layer/ASD-TiO2 film with different desposition time 34
3.4.2 Micro PL pattern of ASD-ZnO nanotip (3 hrs) on ASD-TiO2 film (1 hr ~ 4 hrs) at the annealing temperatures of 300oC in N2O for 1 hr 35
3.4.3 Photocatalytic activity measurement of tramsmittance of ASD-ZnO nanotip (3 hrs) on ASD-TiO2 film (1 hr ~ 4 hrs) at the annealing temperatures of 300oC in N2O for 1 hr 35
3.5 Characteristics of ASD-ZnO nanotip/ZnO nucleation layer/ASD-N-F co-doped TiO2 nanoparticle on XG Corning glass with different desposition time 36
3.5.1 ASD-ZnO nanotip/ZnO nucleation layer/ASD-N-F co-doped TiO2 nanoparticle with different desposition time 36
3.5.2 Micro PL pattern of ASD-ZnO nanotip (3 hrs) on ASD-N-F co-doped TiO2 nanoparticle (1 hr ~ 4 hrs) at the annealing temperatures of 300oC in N2O for 1 hr 37
3.5.3 Photocatalytic activity measurement of tramsmittance of ASD-ZnO nanotip (3 hrs) on ASD-N-F co-doped TiO2 nanoparticle (1 hr ~ 4 hrs) at the annealing temperatures of 300oC in N2O for 1 hr 37
Chapter 4 58
Conclusions 58
References 59
參考文獻 References
Chapter 1 Introduction
[1-1] Kazuhito HASHIMOTO, Hiroshi IRIE and Akira FUJISHIMA, “TiO2 Photocatalysis: A Historical Overview and Future Prospects”, Japanese Journal of Applied Physics Vol. 44, No. 12, 2005, pp. 8269-8285.
[1-2] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, vol. 238, pp. 37-38, 1972.
[1-3] D. F. Ollis, “in Solar Assisted Photocatalysis for Water Purification”,Kluwer Academic, Dordrecht, The Netherlands, 1991, pp. 593-622.
[1-4] M. R. Prairie, L. R. Evans, and B. M. Stange, “An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals”, Environ. Sci. Tech., vol. 27-9, pp. 1776-1782, 1993.
[1-5] D. Y. Goswami, “A review of engineering developments of aqusous phase solar photocatalytic detoxification and disinfection process”, J. Solar Energy Eng., vol. 119, pp. 101-107, 1997.
[1-6] J. A. Herrera, J. M. Dona, A. Viera, E. Tello, C. Valdes, J. Arana, and J. Perez, “The photocatalytic disinfection of urban waste waters”, Chemosphere, vol. 41, no. 3, pp. 323-327. 2000.
[1-7] N. Serpone, “in Solar Photochemistry and Heterogeneous Photocatalysis : A Convenient and Practical Utilization of Sunlight Photons”, Elesevier, Amsterdam, 1989, pp.297-315.
[1-8] A. Salinaro, A. V. Emeline, and J. Zhao, “Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part Ⅱ: experimental determination of quantum yields”, Pure Appl. Chem., vol. 71, no. 2, pp. 83-94, 2000.
[1-9] N. J. Serpone, “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis”, Photochem. Photobiol. A: Chem., vol. 104, no. 1-3, pp. 1-12, 1997.
[1-10] M. S. Arredondo, Faculty of Graduate Studies, The University of Western Ontario, London, Ontario, 2002.
[1-11] M. Barbeni, E. Pramauro, E. Pelizzetti, E. Borgarello, and N. Serpone, “Photodegradation of pentachlorophenol catalyzed by semiconductor particles”, Chemosphere, vol. 14, no. 2, pp. 195-208, 1985..
[1-12] J. P. Rino and N. Studart, “Structural correlations in titanium dioxide”, Phys. Rev. B, vol. 59, no. 10, pp. 6643-6649, 1999.
[1-13] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides”, Thin Solid Films, 323, pp. 59-62, 1998.
[1-14] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties”, Applied Physics A, 73, PP. 595-600, 2001.
[1-15] Hsiu-Fen Lin, Shih-Chieh Liao, Sung-Wei Hung, “The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst”, Journal of Photochemistry and Photobiology A: Chemistry 174 (2005) 82-87.
[1-16] G. San Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon”, Thin Solid Films, vol. 391, pp. 133-137, 2001.
[1-17] K. S. Yeung and Y. W. Lam, “Simple chemical vapor deposition method for depositing thin TiO2 films”, Thin Solid Films, vol. 109, no. 2, pp. 169-178, 1983.
[1-18] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)”, J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998.
[1-19] Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, “The vibration and photoluminescence properties of one-dimensional ZnO nanowires”, Journal of Crystal Growth 274 (2005) 506-511.
[1-20] Hui Ying Yang, Siu Fung Yu, Shu Ping Lau, Xiwang Zhang, Darren Delai Sun, and Guo Jun, “Direct Growth of ZnO Nanocrystals onto the Surface of Porous TiO2 Nanotube Arrays for Highly Efficient and Recyclable Photocatalysts”, small 2009, 5, NO. 20, 2260-2264.
[1-21] Y. Bessekhouad, D. Robert, J. V. Weber, Catalysis Today 101, 315 (2005).
Chapter 2 Experiments
[2-1] Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269.
[2-2] R. H. Schmitt, H. L. Glove, R. D. Brown, ”The Equivalent Conductance of the Hexafluorocomplexes of Group IV (Si, Ge, Sn, Ti, Zr, Hf)”, Journal of the American Chemical Society, 82, pp.5292-5295, 1960.
[2-3] Christian A. Wamser, “Equilibria in the System Boron Trifluoride--Water at 25°”, Journal of the American Chemical Society, 73, pp. 409-416, 1951.
Chapter 3 Results and Discussion
[3-1] M. K. Lee, W. H Shieh, C. M Shih, K. W Tung, “High-quality nitrogen-doped fluorinated silicon oxide films prepared by temperature-difference-based liquid-phase deposition”, J. Phys. Chem. B, vol. 107, pp. 12700-12704, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.115.195
論文開放下載的時間是 校外不公開

Your IP address is 3.145.115.195
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code