Responsive image
博碩士論文 etd-0616113-202839 詳細資訊
Title page for etd-0616113-202839
論文名稱
Title
磺酸化無規共聚聚芳香醚高分子之合成及其應用於燃料電池質子交換膜上之評估
Synthesis and application of sulfonated random copolymer poly(arylene ether)s for proton exchange membrane of fuel cell.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-09
繳交日期
Date of Submission
2013-07-17
關鍵字
Keywords
後磺酸化、燃料電池、無規共聚高分子、質子交換膜、聚芳香醚高分子
Random copolymer, Post-sulfonation, Fuel cells, Proton exchange membrane, Poly(arylene ether)s
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
本論文以實驗室多年發展的多苯環核心製備成雙酚單體(7OH、8OH、9OH),與市售材料4,4ꞌ-Difluorobenzophenone、Bisphenol A行親核性聚縮合反應形成三種不同結構的無規共聚聚芳香醚高分子NR7、NR8、NR9,以GPC檢測重量平均分子量介於7.01×104~1.23×105g/mol之間,FTIR檢測結構官能基,再由NMR檢測分子結構比率。採用後磺酸化製程,以調控不同濃度氯磺酸濃度控制IEC數值介於1.56~2.67mmol/g。  各系列分成低中高三種不同磺酸化程度的無規共聚聚芳香醚高分子,以sNRX-X命名之(eg.sNR9-H為高磺酸化程度的NR9)。全系列磺酸化高分子繼承未磺酸化高分子良好的熱穩定性與機械特性,熱穩定性部分在氮氣保護下Td(5%)達244℃以上,Td(20%)隨著磺酸化程度上升而下降;機械特性部分在室溫、環境濕度條件下抗拉強度最高達103MPa,楊氏系數介於0.23~0.59GPa;吸水率與尺寸安定性部分,sNR9-H sNR8-H、sNR7-H常溫下已有超高的吸水率,所以在高溫的時候有過度膨潤與溶解的現象;則sNR9-M、sNR8-M在高吸水率85%、86%(80℃)時能保持良好的尺寸安定性,約15%、13%的微量改變。質子導電度部分,本篇論文的核心中高磺酸化程度高分子,其sNR9-H、sNR8-H、sNR7-H質子導電度在RH 95% RH 80℃條件下全部都達到與Nafion 117相近的數值,其中以sNR9-H質子導電度為1.69×10-1S/cm超越了Nafion 117的1.31×10-1S/cm。綜合上述,本論文推估此系列中高磺酸化材料應用於質子交換膜燃料電池上能有不錯的效率。
Abstract
In this thesis, the development of the laboratory for many years to synthesized a multi-core benzene bisphenol monomer(7OH, 8OH, 9OH), commercially available materials 4,4 ꞌ-Difluorobenzophenone, and Bisphenol were synthesized via nucleophilic polycondensation reaction to three different structures of poly(arylene ether)s random copolymer(NR7, NR8, NR9).The weight-average molecular of polymers was between from 7.01×104 to 1.23×105 g/mol by GPC measurement.The designed chemical structures were confirmed functional groups by the FTIR spectroscopy, and hydrophilic/hydrophobic ratio by the NMR analysis. Using post-sulfonation process, the ion exchange capacity(IEC) of sulfonated polymers was controlled to be from 1.56 to 2.67mmol/g by different chlorosulfonic acid concentrations of sulfonic acid reaction.Each sulfonated poly(arylene ether)s random copolymer series was divided into three different degree of sulfonation(High, Medium, Low). Each sample to sNRX-X naming. (eg.sNR9-H:High degree of sulfonation NR9 polymer).Full series of sulfonated polymers inherited good thermal stability and mechanical properties from non-sulfonated polymers. The sulfonated membranes were thermally stable up to 244℃ for 5% loss under nitrogen, and decomposition temperature for 20% loss decreased with increasing degree of sulfonatin.The mechanical properties section, tensile strength up to 103MPa and Young’s modulus between 0.23 to 0.59GPa at room temperature under ambient humidity.In the water uptake and dimensional stability part, sNR9-H sNR8-H,sNR7-H, which were already high water uptake at room temperature, so that they were over-swelling and dissolution at high temperature water; then sNR9-M sNR8-M, which could maintain slight dimensional change(about 15% and 13%) while in the high water uptake 85% 86% at 80 ℃. Proton conductivity, the core of this thesis the high degree of sulfonated polymer, which sNR9-H, sNR8-H, sNR7-H proton conductivity all achieved similar value to Nafion 117 under RH 95% RH 80 ℃conditions , which sNR9-H proton conductivity of 1.69 × 10-1S/cm beyond the Nafion 117 of 1.31 × 10-1S/cm. According to above results, we estimate the series of high and medium degree of sulfonation menbranes can have good efficieny on fuel cell application as a proton exchange membrane.
目次 Table of Contents
誌 謝 i
摘 要 ii
Abstract iii
目 錄 v
圖目錄 viii
第一章. 序論 1
1-1 前言 1
1-2 燃料電池種類 2
1-3 質子交換膜燃料電池工作機制 5
1-3-1工作機制 5
1-3-2傳導機制 7
1-4 質子交換膜燃料電池種類 9
1-4-1全氟離子性高分子薄膜(Perfluorinated polymer) 9
1-4-2非氟離子性高分子薄膜(Non-perfluorinated polymer) 10
1-4-3酸鹼高分子薄膜(Acid-base blends polymer)[12] 14
1-5 碳氫離子性質子交換膜的分子設計 15
1-6 無規共聚聚芳香醚高分子文獻回顧 20
1-7 研究動機 24
第二章. 實驗儀器介紹與原理 26
2-1鑑定分析儀器 26
高磁場液態磁核共振儀器(Nuclear Magnetic Resonance,NMR) 26
基質輔助雷射脫附游離飛行質譜儀(MALDI TOF/TOF) 26
凝膠滲透層析儀(GPC) 27
2-2熱分析儀器 27
熱重量分析儀(Thermogravimetric Analyzer,TGA) 27
熱示差掃描卡量計(Differential Scanning Calorimetr,DSC) 27
熱機械分析儀(Thermal Mechanical Analyzer,TMA) 28
2-3 微觀分析 28
Transmission Electron Microscope(TEM) 28
Atomic force microscope (AFM)[28] 28
2-4 電化學分析 29
AC Impedance 29
第三章. 實驗 30
3-1使用藥品總表 30
3-2實驗流程 32
3-3 雙酚單體製備 34
3-3-1 34
3-3-2 35
3-3-3 36
3-3-4 39
3-3-5 41
3-3-6 47
3-4 高分子聚合 50
3-5 高分子磺酸化[30][31][32] 56
(a.) 薄膜製備[33] 58
(b.) IEC測定 58
(c.) 吸水率、尺寸安定性測試(Water uptake, Dimensional stability) 58
(d.) Hydration number(λ) 59
(e.) 氧化、水解穩定性 59
第四章. 結果與討論 60
4-1 未磺酸化高分子分析 60
4-1-1 GPC分析 60
4-1-2 TGA分析 61
4-1-3 DSC分析 63
4-1-4 TMA分析 65
4-2 磺酸化高分子分析 67
4-2-1 FTIR分析 67
4-2-2 TGA分析 70
4-2-3 TMA分析 73
4-2-4 吸水率[42][43]、λ、尺寸安定性、氧化穩定性 76
4-2-5 質子導電度、TEM、AFM 83
第五章. 結論 86
第六章. 參考文獻 88
第七章. 補充資料 93
參考文獻 References
[1] 燃料電池:新世紀能源林昇佃等著 滄海圖書
[2] 台灣燃料電池資訊網
[3] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, A review of polymer electrolyte membrane fuel cells:Technology, applications, and needs on fundamental research, Applied Energy, 2011, 88, 981-1007.
[4] T. J. Peckham, S. Holdcroft, Structure-Morphology-Property Relationships of Non-Perfl uorinated Proton-Conducting Membranes, Adv. Mater., 2010, 22, 4667-4690.
[5] K. Jiao, X. Li, Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, 2011, 37, 221-291.
[6] T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer, 2009, 50, 5341-5357.
[7] B. Smitha, S. Sridhar, A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review, Journal of Membrane Science, 2005, 259, 10-26.
[8] http://nuvant.com/products/fuel-cell-electrode-fabrication-equipment/nafion-117/
(2013).
[9] C. H. Lee, C. H. Park, Y. M. Lee, Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications, Journal of Membrane Science, 2008, 313, 199-206.
[10] D. S. Kim, G. P. Robertson, M. D. Guiver, Comb-Shaped Poly(arylene ether sulfone)s as Proton Exchange Membranes, Macromolecules, 2008, 41, 2126-2134.
[11] B. Bae, K. Miyatake, M. Uchida, H. Uchida, Y. Sakiyama,T. Okanishi, and M. Watanabe, Sulfonated Poly(arylene ether sulfone ketone) Multiblock Copolymers with Highly Sulfonated Blocks. Long-Term Fuel Cell Operation and Post-Test Analyses, ACS Appl. Mater. Interfaces, 2011, 3, 2786-279.
[12] 湯凱鈞,局部密集磺酸化聚芳香醚高分子運用於質子交換膜之研究,國立中山大學光電工程學系研究所碩士論文(2012).
[13] T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer, 2009, 50, 5341-5357.
[14] 陳信龍,高分子之自組裝奈米結構,The Chinese Chem. Soc., 2004, 62, 455-460.
[15] M. Tanaka, M. Koike, K. Miyatake, M. Watanabe, Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications, Polym. Chem., 2011, 2, 99
[16] K. Miyatake, Y. Chikashige, E. Higuchi, M. Watanabe, Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications, J. AM. CHEM. SOC., 2007, 129, 3879-3887.
[17] K. Miyatake, B. Bae, M. Watanabe, Fluorene-containing cardo polymers as ion conductive membranes for fuel Cells, Polym. Chem., 2011, 2, 1919.
[18] Q. Zhang, B. Liu, W. Hu, W. Xu , Z. Jiang , W. Xing, M. D. Guiver, Poly(arylene ether) electrolyte membranes bearing aliphatic-chain-linked sulfophenyl pendant groups, Journal of Membrane Science, 2013, 428, 629-638.
[19] N. Li, D. S. Hwang, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes, Macromolecules, 2011, 44, 4901-4910.
[20] A. K. Mohanty, E. A. Mistri, A. Ghosh, S. Banerjee, Synthesis and characterization of novel fluorinated poly(arylene ether sulfone)s containing pendant sulfonic acid groups for proton exchange membrane materials, Journal of Membrane Science, 2012, 409-410, 145- 155.
[21] W. Y. Huang, B. R. Liaw, P. T. Huang, M. Y. Chang, Y. K. Han, Macromolecules, 2007, 40,8649-8657.
[22] W. Y. Huang and S. Y. Huang, Macromolecules, 2010, 43, 10355-10365.
[23] B. R. Liaw, W. Y. Huang, P. T. Huang, M. Y. Chang, Y. K. Han, Polymer, 2007, 48, 7087-7097.
[24] W. Y. Huang, M. Y. Chang, Y. K. Han and P. T. Huang, J. Polym. Sci. Part A: Polym. Chem., 2010,48, 5872-5884.
[25] Chun Che Lee, Wen -Yao Huang, Wen-Chi Hung, Chun-Te Lee, , in press.
[26] C. C. Lee, W. Y. Huang , Polymer Journal, 2010, 43, 180-185.
[27] K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, A. L. Burlingame, The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer, Anal. Chem. 2000, 72, 552-558.
[28] http://www.knvs.tp.edu.tw/AFM/ch4.htm
[29] 阮凡軒,新穎雙酚單體合成聚芳香醚高分子在軟性基板上之製備與特性研究,國立中山大學光電工程學系研究所碩士論文(2011)
[30] N. C. Foster, Ph. D., P. E., Chemithon,1997.
[31] W. A. Thaler, Macromolecules, 1983, 16, 623.
[32] Y. C. Yen, Y. S. Ye, C. C. Cheng, Polymer, 2010, 51, 84.
[33] Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, Polymer,2009, 50, 3196.
[34] K. A. Mauritz, and R. B. Moore, State of Understanding of Nafion, Chem. Rev., 2004, 104, 4535-4585.
[35] J. J. Camberato, Cation Exchange Capacity - Everything You Want to Know and Much More.
[36] 黃冠龍,新穎軟性基板材料之製備及光電特性研究,國立中山大學光電工程學系研究所碩士論文(2008)。
[37] H. Y. Jung, J. W. Kim, Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC), International Journal of Hydrogen energy, 2012, 37, 12580-12585.
[38] W. Y. Huang, B. R. Liaw, M. Y. Chang, Y. K. Han,and P. T. Huang, High Glass-Transition Temperature and Organosoluble Novel Arylene Ether Polymers, Macromol. 2007, 40, 8649-8657.
[39] C. K. Lin, J. C. Tsai, The effect of the side-chain ratio on main-chain-type and side-chain-type sulfonated poly(ether ether ketone) for direct methanol fuel cell applications, J. Mater. Chem, 2012, 22, 9244-9252.
[40] H. Y. Jung, K. Y. Cho, K. A. Sung, W. K. Kim, J. K. Park, J.Power Sources, 2006, 163, 56.
[41] H. Y. Jung, K. Y. Cho, K. A. Sung, W. K. Kim, M. Kurkuri, J. K. Park, Electrochim.Acta, 2007, 52, 4916.
[42] P. N. Pintauro, H. Yang, United States Patent. (2002)
[43] T. E. Springer, T. A. Zawodzinski, and S. GottesfeldJ. Electrochem. Soc., 1991,138, 2334.
[44] S. P. Tung and B. J. Hwang, J. Membr. Sci., 2004 , 241, 315.
[45] M. A. Hickner and B. S. Pivovar, , 2005, 5, 213.
[46] A. Guinier and G. Fournet, Wiley Interscience, 1955, NewYork.
[47] N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers, Energy Environ. Sci., 2012, 5, 5346-5355.
[48] C. Wang, N. Li, D. W. Shin, S. Y. Lee, N. R. Kang, Y. M. Lee, and M. D. Guiver, Fluorene-Based Poly(arylene ether sulfone)s Containing Clustered Flexible Pendant Sulfonic Acids as Proton Exchange Membranes, Macromolecules, 2011, 44, 7296-7306.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.125.171
論文開放下載的時間是 校外不公開

Your IP address is 18.222.125.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code