Responsive image
博碩士論文 etd-0616113-232248 詳細資訊
Title page for etd-0616113-232248
論文名稱
Title
陽極緩衝層對有機太陽能電池的影響
The effects of anode buffer layer on the performance of organic solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-08
繳交日期
Date of Submission
2013-07-26
關鍵字
Keywords
AlClPc、Kink、吸收頻譜、陽極緩衝層、ZnPc
Kink, ZnPc, Absorption spectra, Anode buffer layer, AlClPc
統計
Statistics
本論文已被瀏覽 5736 次,被下載 0
The thesis/dissertation has been browsed 5736 times, has been downloaded 0 times.
中文摘要
本論文以增加有機太陽能電池的吸收波段與以無機材料應用於陽極緩衝層作為研究重點,在有機太陽能電池裡,常用的陽極緩衝層材料為PEDOT:PSS,但PEDOT:PSS為無紅外波段吸收之材料,而主動層的吸收波段只有400 nm~600 nm,對於太陽能寬廣的頻譜來說,還有很大的進展空間可以去有效的利用太陽光,因此若想要有效的提升有機太陽能電池的效率,最直接的方式就是額外增加一吸收層,此層的吸收波段得與主動層的主吸收波段能有互補的功能,因此本研究欲以酞菁(phthalocyanines)類中的酞菁鋁氯(Aluminum chloride phthalocyanine ; AlClPc)與酞菁鋅(Zin phthalocyanine ; ZnPc),應用於陽極緩衝層,它們的主要吸收波段在600 nm~800nm之間,與主動層主要的吸收波段能有著良好的互補性,而作為陽極緩衝層不僅是要有適當的吸收波段,能階更得有良好的匹配性,而此兩種材料能階皆符合,因此我期望當使用這兩種材料作為陽極緩衝層時,元件的電性能獲得有效的提升。因此本研究所設計的結構如下:
Standard-ITO(1750Å)/PEDOT:PSS(500Å)/P3HT:PCMB(800Å)/Al(2000Å).
Device A-ITO(1750Å)/AlClPc 或 ZnPc(XÅ)/P3HT:PCMB(800Å)/Al(2000Å).
Device B-ITO(1750Å)/PEDOT:PSS(500Å)/AlClPc或ZnPc(X Å)/P3HT:PCBM(800
Å)/Al(2000 Å).
Device B-ITO(1750Å) /AlClPc或ZnPc(XÅ)/PEDOT:PSS(500 Å)/P3HT:PCBM(800
Å)/Al(2000Å).
X=5nm, 10nm, 15nm.
我以Device A、B與Device C去比較以PEDOT:PSS為主的標準元件,但實驗結果發現,Device A、B與C的元件電性不比標準元件來的高,反而會因為材料性質、膜層間的能障以及電路結構受到限制,因此衍生出S-shaped(Kink)與電路特性等議題。
Abstract
The purpose of this research is to study extend the device absorption spectra and inorganic material apply to anode buffer layer,the PEDOT:PSS often usebe anode buffer layer in the organic solar cell, but the PEDOT:PSS was non-absorption material and from 400 nm to 600 nm was active layer only have. For wide absorption spectra of solar, It has a lot of room for improvement, if we want to improve the organic solar cell efficiency, we can insert absorption layers to complement the absorption spectra of active layer, therefore I use the AlClPc and ZnPc as anode buffer apply to anoder buffer layer. AlClPc and ZnPc major absorption spectra at 600 nm to 800 nm. Though AlClPc and ZnPc can complement the absorption spectra of active layer, but the energy level alos important to organic solar cells, I hope use thatmaterial enhance the efficiency of device.

I design four structure for this research:
Standard-ITO(1750Å)/PEDOT:PSS(500Å)/P3HT:PCMB(800Å)/Al(2000Å).
Device A-ITO(1750Å)/AlClPc or ZnPc(XÅ)/P3HT:PCMB(800Å)/Al(2000Å).
Device B-ITO(1750Å)/PEDOT:PSS(500Å)/AlClPc or ZnPc(X Å)/P3HT:PCBM(800
Å)/Al(2000 Å).
Device C-ITO(1750Å) /AlClPc or ZnPc(XÅ)/PEDOT:PSS(500 Å)/P3HT:PCBM(800
Å)/Al(2000Å).
X=5nm, 10nm, 15nm.
I compare Device A, B and C to standard device, I find those performance aren’t better than standard, but on the contrary that will be trapped by property of material, barrier and electric circuit, and this item to derive the issue what the S-shaped(kink) and characteristic of electric circuit.
目次 Table of Contents
致謝 i
中文摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiv
第一章緒論 1
1-1 太陽能電池的定義 1
1-2 有機與無機太陽能電池的分別與介紹 2
1-3 有機太陽能電池演進史 4
1-3-1 單層結構有機太陽能電池 4
1-3-2 雙層異質界面結構有機太陽能電池 5
1-3-3 混和層異質界面結構有機太陽能電池 6
1-3-4 接合層異質界面結構有機太陽能電池 9
1-4 緩衝層 10
1-4-1 陰極緩衝層 12
1-4-2 陽極緩衝層 14
1-5 研究動機 16
第二章理論基礎 17
2-1 能量及電荷轉移機制 17
2-2 光電轉換原理 18
2-3 太陽能電池等效電路 24
2-4 光電特性參數 26
2-4-1 短路電流 (Short circuit current ; Isc) 26
2-4-2 開路電壓 (Open circuit voltage ; Voc) 27
2-4-3 填充因子 (Fill factor ; F.F.) 27
2-4-4 功率轉換效率 (Power conversion efficiency ; ηp) 27
2-5 太陽光能 29
第三章實驗流程 33
3-1 實驗架構 33
3-2 材料 34
3-3 藥品配置 36
3-3-1 陽極緩衝層 PEDOT:PSS 36
3-3-2 主動層 P3HT:PCBM 36
3-4 實驗步驟 37
3-4-1 ITO玻璃基板清洗 37
3-4-2 有機太陽能電池元件製程 37
Standard 39
Device A 39
Device B 40
Device C 41
3-5 製程設備 43
3-5-1 超音波清洗機(Ultrasonic cleaning) 43
3-5-2 加熱盤 (Hot plate) 43
3-5-3 電漿清洗機(O2 plasma) 43
3-5-4 旋轉塗佈機(Spin coater) 44
3-5-5 手套箱(Glove box) 44
3-5-6 蒸鍍機(Evaporator) 45
3-5-7 紫外光曝光機(UV exposure) 46
3-6 量測儀器 47
3-6-1 紫外光/可見光光譜儀(UV-Vis) 47
3-6-2 表面輪廓儀(Surface profiler) 48
3-6-3 原子力顯微鏡 (AFM) 49
3-6-4 入射光子轉換效率 ( Incident Photon Conversion Efficiency) 52
3-6-5 太陽光譜模擬量測系統 ( Solar simulator system) 53
第四章結果與討論 54
4-1 基礎分析 54
4-1-1 UV-Vis量測 54
4-1-2 能階與載子漂移率 54
4-2 AlClPc及ZnPc應用於陽極緩衝層 56
4-2-1 Device A 56
4-2-2 Device B 59
4-2-3 Device C 62
4-3 S-Shaped(Kink) 65
4-4 IPCE量測與分析 69
4-4-1 Device B 69
4-4-2 Device C 70
4-5 熱退火處理分析 71
4-5-1 尚未經過熱退火處理前 72
4-5-2 經過熱退火處理後 75
第五章總結與未來工作 78
總結 78
未來工作 79
參考文獻 80
參考文獻 References
[1] C. Y. Yang, A. J. Heeger, Syn. Met., 83, 85, (1996).
[2] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789, (1995).
[3] S. E. Shaheen, C. J. Braber, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett., 78, 841, (2001).
[4] M. Al-Ibrahim, O. Ambacher, S. Sensfuss, G. Gobsch, Appl. Phys. Lett., 86, 201120, (2005).
[5] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N. S. Sariciftci, Adv. Func. Mater., 14, 1005, (2004).
[6] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc., 130, 3619, (2008).
[7] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater., 22, E135, (2010).
[8] E. Bundgaard, F. C. Krebs, Sol. Energ. Mat. Sol. C., 91, 954, (2007).
[9] R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, B. D. Boer, Polym. Rev., 48, 531, (2008).
[10] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science, 317, 222, (2007).
[11] L. M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater., 21, 1434, (2009).
[12] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci., 4, 285, (2011)
[13] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett., 70, 152, (1997).
[14] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, Appl. Phys. Lett., 80, 1288, (2002).
[15] J. Lee, Y. Park, D. Y. Kim, H. Y. Chu, H. Lee, L. M. Do, Appl. Phys. Lett., 82, 173, (2003)
[16] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, J. Appl. Phys., 84, 2324, (1998)
[17] J. H. Lee, S. Cho, A. Roy, H. T. Jung, A. J. Heeger, Appl. Phys. Lett., 96, 163303, (2010).
[18] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett., 90, 163517, (2007).
[19] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Adv. Mater., 19, 2445, (2007).
[20] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, Appl. Phys. Lett., 80, 1288, (2002).
[21] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater., 18, 572, (2006).
[22] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, J. Appl. Phys., 84, 2324, (1998).
[23] Z. Feng, Y. Hou, D. Lei, Renew. Energ., 35, 1175, (2010).
[24] H. Z. Yu, J. B. Peng, Org. Electron., 9, 1022, (2008).
[25] B. Paci, A. Generosi, V. R. Albertini, P. Perfetti, R. D. Bettignies, J. Phys. Chem. C, 113, 19740, (2009).
[26] F. C. Chen, S. C. Chien, J. Mater. Chem., 19, 6865, (2009).S. H. Oh, S. I. Na, J. Jo, B. Lim, D. Vak, D. Y. Kim, Adv. Funct.
[27] S. H. Oh, S. I. Na, J. Jo, B. Lim, D. Vak, D. Y. Kim, Adv. Funct. Mater., 20, 1977, (2010).
[28] C. Y. Jiang, X. W. Sun, D. W. Zhao, A. K. K. Kyaw, Y. N. Li, Sol. Energ. Mat. Sol. C., 94, 1618, (2010).
[29] A. Elschner and S. Kirchmeyer, in ref. 3, chap. 7.
[30] T. W. Lee, Y. Chung, Adv. Funct. Mater., 18, 2246, (2008).
[31] T. S. Huang, C. Y. Huang, Y. K. Su, J. S. Fang, M. V. M. Rao, T. F. Guo, T. C. Wen, IEEE Photonic. Tech. L., 20, 1935, (2008).
[32] S. H. Eom, S. Senthilarasu, P. Uthirakumar, S. C. Yoon, J. Lim, C. Lee, H. S. Lim, J. Lee, S. H. Lee, Org. Electron., 10, 536, (2009).
[33] T. Xiao, W. Cui, J. Anderegg, J. Shinar, R. Shinar, Org. Electron., 12, 257, (2011).
[34] F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, M. H. Huang, Appl. Phys. Lett., 95, 013305, (2009)
[35] B. Yin, Q. Liu, L. Y. Yang, X. M. Wu, Z. F. Liu, Y. L. Hua, S. G. Yin, Y. S. Chen, J. Nanosci. Nanotechno., 10, 1934, (2010).
[36] D. Muhlbacher, M. Scharber, M. Morana, Z. G. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Mater., 18, 2884, (2006).
[37] S. Sista, M. H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, Y. Yang, Adv. Mater., 22, 380, (2010).
[38] M. A. Green, Solar Cells: Operating Principles, Technology, and System Application, University of NSW, Kensington, Australia, (1992).
[39] 莊嘉琛, 太陽能工程-太陽電池篇, 全華, (1997).
[40] 陳一帆, 碩士論文, 國立中山大學光電工程研究所, (2005).
[41] M. S. Roy, P. Balraju, Y. S. Deol, S. K. Sharma, G. D. Sharma, J Mater Sci., 43:5551–5563, (2008).
[42] V. Kazukauskas, A. Arlauskas, M. Pranaitis, R. Lessmann, M. Riede, K. Leo, Mol. Cryst. Liq. Cryst., 61, 522, (2010).
[43] F. A. Castro, J. Heier, F. N‥uesch, R. Hany, IEEE QUANTUM ELECTRONICS., 6, 16, (2010).
[44] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, Appl. Phys. Lett. 98, 063301 (2011).
[45] A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, V. Dyakonov, PHYSICAL REVIEW B 82, 115306 (2010).
[46] A. Kumar, S. Sista, Y. Yang, J. Appl. Phys. 105, 094512 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.181.209
論文開放下載的時間是 校外不公開

Your IP address is 3.22.181.209
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code