Responsive image
博碩士論文 etd-0616113-235128 詳細資訊
Title page for etd-0616113-235128
論文名稱
Title
人為與氣候驅動的海水酸化:觀測與模擬
Anthropogenic and Climate Driven Ocean Acidification:Observations and Modeling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-06
繳交日期
Date of Submission
2013-07-17
關鍵字
Keywords
海水酸化、酸化率、海水pH、二氧化碳、暖化、海氣二氧化碳交換
ocean acidification, warming, carbon dioxide, seawater pH, acidification rate, air-sea CO2 exchange
統計
Statistics
本論文已被瀏覽 5945 次,被下載 301
The thesis/dissertation has been browsed 5945 times, has been downloaded 301 times.
中文摘要
全球暖化及海水酸化,被視為大氣二氧化碳增加下一體兩面的表象。雖然全球大氣二氧化碳濃度的上升率一致,然而不同時間序列測站的數據卻顯示,海洋表水酸化率並不一致,成因仍未有所解釋。本研究透過全球六個時間序列測站的數據,以及熱力學計算,解釋造成海水pH (原位pH (pHinsitu)與在25 oC下測量的pH (pH25)) 改變率不一致的原因。本研究證明pHinsitu 與pH25 改變率無法直接比較,因為兩者在水溫改變下有反相的改變,此結果乃首次報導。由於海氣二氧化碳交換,無法在海水水溫改變後馬上達到平衡,海水暖化加快了海水酸化 (-0.00722°C-1) ;此速率為僅由海氣二氧化碳交換達到平衡下所預期的6.6倍 (-0.00109°C-1)。以上結果顯示,全球海水酸化率不一致,是因為各時間序列測站水溫改變率不同,以及使用不同pH數據 (pHinsitu 或pH25) 所造成。本研究發現,海水pH為水溫及時間的函數,而溶解態無機碳(DIC)濃度則為水溫、鹽度及時間的函數。而模擬的pH及DIC,更可進一步用來模擬海水二氧化碳分壓,以及碳酸鈣飽和度。
在1994-2012年間,位處台灣南端的南灣表水酸化率,為大氣二氧化碳增加下所預期的1.5倍。然而, DIC 濃度的上升率卻只有預期的25%。這是因為在時間序列的觀測初期,有較多西菲律賓海海水在強聖嬰時期入侵南灣,而在2005年後,南灣海水湧升增強,加快了海水酸化。南灣的低DIC上升率,主要是因為海水鹽度下降,稀釋作用降低了因海氣二氧化碳交換,以及湧升增強所造成的DIC上升率。在西菲律賓海海水入侵以及湧升兩大作用下,南灣海水的pH於短短兩年間 (1/2003~10/2005) 下降了0.06 單位。此變化幅度,相當於35年來大氣二氧化碳增加所造成的酸化量。
上述結果展示了氣候變化可能對海水酸化的影響,即在考量海洋氣候的變化下,海洋生態系統遭受海水酸化衝擊的時間,可能比只考慮大氣二氧化碳濃度增加所預期的來得更早。
Abstract
Conventional wisdom has it that global warming and seawater acidification are different manifestations of increased atmospheric CO2. Although atmospheric CO2 rises at similar rates globally, the question of why the rates at which surface seawater pH decreases differ remains unanswered. Here we use data from six decadal time-series stations globally and thermodynamic calculations to provide an explanation on the inconsistency in rates of change in pH measured at 25°C (pH25) and at in situ temperature (pHinsitu). An anti-phase between rates of change in pHinsitu and pH25 vs. rates of temperature change is demonstrated for the first time. As the air-sea CO2 exchange lags behind changing seawater temperature, warming accelerates seawater acidification (-0.00722 °C-1) at a rate 6.6-times that expected under only the air-sea CO2 equilibrium (-0.00109 °C-1). These findings explain that inconsistencies in reported acidification rates worldwide are mainly due to different rates of temperature change and different types of pH use (pHinsitu or pH25). A surprising finding is that surface ocean pH can be written as a linear function of seawater temperature and time, and dissolved inorganic carbon (DIC) can be written as a linear function of seawater temperature, salinity and time. The modeled pH and DIC can further be used to model the seawater pCO2 and saturation state of calcium carbonate.
During 1994-2012, Nanwan Bay, southern Taiwan, suffered 1.5-times the expected acidification rate due to the increased atmospheric CO2, however, the rate of DIC increase is only about 25% of that expected due to the increased atmospheric CO2. This was initially due to increased intrusions of the West Philippines Sea (WPS) water during strong El Nino periods, and was then due to enhanced upwelling since 2005. The low DIC increasing rate is because the decrease in salinity dampened the increase in DIC under air-sea CO2 exchange and upwelling. Combining intrusions of WPS water and upwelling at Nanwan Bay, seawater suffered 0.06 pH decrement within just two years (1/2003~10/2005). Such a magnitude of change is equivalent to 35 years of acidification due to increased atmospheric CO2.
The results above provide an insight on how future climate change can alter the ocean acidification. Implications are that marine ecosystems suffering from ocean acidification could happen earlier than expected when ocean climate changes are considered along with increasing atmospheric CO2.
目次 Table of Contents
論文審定書 I
Acknowledgement II
摘要 IV
Abstract VI
List of Contents VIII
List of Figure Captions XI
List of Table Captions XVI

Chapter 1: Introduction 1
1-1 Ocean acidification 1
1-2 Inconsistency in ocean acidification rates 3
1-3 Predicted condition for 2030-2050 has already happened 4
1-4 Ocean climate-The other driving force 5
1-5 Objectives 8
1-6 Outlines 9

Chapter 2: Warming accelerates and explains inconsistencies in ocean acidification rates 11
2-1. Introduction 13
2-2. Methods and Materials 14
2-2.1 Observational Data 14
2-2.2 Open and Closed System Modeling 19
2-3. Results and Discussion 21
2-3.1.1 Modeled changes in pHinsitu and pH25 under changing temperature 21
2-3.1.2 Observed rates of pHinsitu and pH25 change under changing temperature 23
2-3.2 Verifications on the observed data and pH modeling 27
2-3.2.1 pH25 and pHinsitu 27
2-3.2.2 Rates of pCO2 change 29
2-3.2.3 Modeling the pH and pCO2 time series by regression results 31

2-3.2.4 Consistency between multiple linear regression and thermodynamic calculations 36
2-3.3. Explanation and implications of changing temperature in ocean acidification 39
2-4. Conclusions 43

Chapter 3: Ocean surface DIC modeling: Implications and applications 44
3-1. Introduction 45
3-2 Methods and Materials 47
3-2.1 Modeling Equations 47
3-2.2 Initial values and coefficients determination 48
3-3 Results and Discussion 51
3-3.1 Modeled vs. observed 51
3-3.2 Multiple-Linear-Regression (MLR) vs. observed 52
3-3.3 Saturation state of aragonite modeling 57
3-3.4 Natural vs. anthropogenic variability 59
3-4 Conclusions 62

Chapter 4: Fast climate driven ocean acidification in margins of the tropical western Pacific 63
4-1. Introduction 64
4-2. Sources of data and methods 66
4-3. Results 69
4-3-1. Long-tem trends in seawater carbonate chemistry 69
4-3-2 De-seasoned Variations 73
4-4. Discussion 76
4-4.1. Intrusion of WPS water 76
4-4.2. Scale of WPS seawater intrusion and impact on air-sea CO2 flux 76
4-4.3. Enhanced upwelling and its scale 80
4-4.4. Rates of change with changing circulation and enhanced upwelling 82
4-4.5 Dampening DIC increase by lowering salinity 83
4-5. Conclusion 88

Summary 90

Appendix I. 5. The nonlinear relationship between nutrient ratios and salinity in estuarine ecosystems: Implications for management 94
5-1. Introduction 95
5-2. Management strategy and salinity application 96
5-3. Changing nutrient inventories 102
5-4. Conclusions 105
References 106
參考文獻 References
Anderson, D.M., Burkholder, J.M., Cochlan, W.P., Glibert, P.M., Gobler, C.J., Heil, C.A., Kudela, R.M., Parsons, M.L., Rensel, J.E.J., Townsend, D.W., Trainer, V.L. and Vargo, G.A., 2008. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae, 8(1): 39-53, doi:10.1016/ j.hal.2008.08.017.
Bates, N.R., 2007. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. Journal of Geophysical Research-Oceans, 112(C9), doi:C09013 10.1029/2006jc003759.
Bates, N.R., Best, M.H.P., Neely, K., Garley, R., Dickson, A.G. and Johnson, R.J., 2012. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9(7): 2509-2522, doi:10.5194/bg-9-2509-2012.
Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M. and Boss, E.S., 2006. Climate-driven trends in contemporary ocean productivity. Nature, 444(7120): 752-5, doi:10.1038/nature05317.
Cai, W.J., Hu, X.P., Huang, W.J., Murrell, M.C., Lehrter, J.C., Lohrenz, S.E., Chou, W.C., Zhai, W.D., Hollibaugh, J.T., Wang, Y.C., Zhao, P.S., Guo, X.H., Gundersen, K., Dai, M.H. and Gong, G.C., 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4(11): 766-770, doi:10.1038/ngeo1297.
Caraco, N., 1988. What is the mechanism behind the seasonal switch between N-limitation and P-limitation in estuaries. Canadian Journal of Fisheries and Aquatic Sciences, 45(2): 381-382.
Chen, C.T. and Millero, F.J., 1979. Gradual increase of oceanic CO2. Nature, 277: 205-206.
Chen, C.T.A., Huang, T.H. and Fu, Y.H., 2012. Strong sources of CO2 in inner estuaries become sinks of CO2 in large rive plumes. Current Opinion in Environmental Sustainability, 4: 179-185.
Chen, C.T.A., Jan, S., Huang, T.H. and Tseng, Y.H., 2010. Spring of no Kuroshio intrusion in the southern Taiwan Strait. Journal of Geophysical Research-Oceans, 115, doi:10.1029/2009jc005804.

Chen, C.T.A. and Pytkowicz, R.M., 1979. On the total CO2-titration alkalinity-oxygen system in the Pacific Ocean. Nature, 281: 362-365.
Chou, W.C., Sheu, D.D., Lee, B.S., Tseng, C.M., Chen, C.T.A., Wang, S.L. and Wong, G.T.F., 2007. Depth distributions of alkalinity, TCO2 and at SEATS time-series site in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14–15): 1469-1485, doi:http://dx.doi.org/10.1016/j.dsr2.2007.05.002.
Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. and Duarte, C.M., 2009a. Ecosystem thresholds with hypoxia. Hydrobiologia, 629(1): 21-29, doi:10.1007/s10750-009-9764-2.
Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C. and Likens, G.E., 2009b. Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917): 1014-1015, doi:10.1126/science.1167755.
Cox, T.J.S., Maris, T., Soetaert, K., Conley, D.J., Van Damme, S., Meire, P., Middelburg, J.J., Vos, M. and Struyf, E., 2009. A macro-tidal freshwater ecosystem recovering from hypereutrophication: the Schelde case study. Biogeosciences, 6(12): 2935-2948.
Dettmann, E.H., 2001. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: A model analysis. Estuaries, 24(4): 481-490, doi:10.2307/1353250.
Diaz, R.J. and Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891): 926-929, doi:10.1126/ science.1156401.
Dickson, A.G., 1990a. Standard potential of the reaction: AgCl(s)+0.5H2(g)=Ag(s)+HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic seawater from 273.15 to 318.15 K. Journal of Chemical Thermodynamics, 22(2): 113-127.
Dickson, A.G., 1990b. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 K to 318.15 K. Deep-Sea Research Part a-Oceanographic Research Papers, 37(5): 755-766.
Dickson, A.G. and Millero, F.J., 1987. A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep-Sea Research Part a-Oceanographic Research Papers, 34(10): 1733-1743.
Doering, P.H., Oviatt, C.A., Nowicki, B.L., Klos, E.G. and Reed, L.W., 1995. Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient. Marine Ecology-Progress Series, 124(1-3): 271-287.
Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M. and Dunn, J.R., 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453(7198): 1090-U6, doi:10.1038/nature07080.
Dong, Z., Liu, D. and Keesing, J.K., 2010. Jellyfish blooms in China: Dominant species, causes and consequences. Marine Pollution Bulletin, 60(7): 954-963.
Dore, J.E., Lukas, R., Sadler, D.W., Church, M.J. and Karl, D.M., 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences of the United States of America, 106(30): 12235-12240, doi:10.1073/pnas.0906044106.
Duarte, C.M., Conley, D.J., Carstensen, J. and Sanchez-Camacho, M., 2009. Return to Neverland: Shifting baselines affect eutrophication restoration targets. Estuaries and Coasts, 32(1): 29-36, doi:10.1007/s12237-008-9111-2.
Durack, P.J., Wijffels, S.E. and Matear, R.J., 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080): 455-458, doi:10.1126/science.1212222.
Egleston, E.S., Sabine, C.L. and Morel, F.M.M., 2010. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochemical Cycles, 24, doi:10.1029/ 2008gb003407.
Erba, E., Bottini, C., Weissert, H.J. and Keller, C.E., 2010. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science, 329(5990): 428-432, doi:10.1126/ science.1188886.
Feely, R.A. and Chen, C.T.A., 1982. The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the northeast Pacific. Geophysical Research Letters, 9(11): 1294-1297.
Feely, R.A., Doney, S.C. and Cooley, S.R., 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography, 22(4): 36-47.
Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D. and Hales, B., 2008. Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science, 320(5882): 1490-1492, doi:10.1126/ science.1155676.

Fisher, T.R., Peele, E.R., Ammerman, J.W. and Harding, L.W., 1992. Nutrient limitation of phytoplankton in Chesapeake Bay. Marine Ecology-Progress Series, 82(1): 51-63.
Gonzalez-Davila, M., Santana-Casiano, J.M., Rueda, M.J. and Llinas, O., 2010. The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences, 7(10): 3067-3081, doi:10.5194/bg-7-3067-2010.
Harrison, P.J., Yin, K., Lee, J.H.W., Gan, J. and Liu, H., 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28(12): 1405-1415.
Hartzell, J.L. and Jordan, T.E., 2012. Shifts in the relative availability of phosphorus and nitrogen along estuarine salinity gradients. Biogeochemistry, 107(1-3): 489-500, doi:10.1007/s10533-010-9548-9.
Hoegh-Guldberg, O., Mumby, P.J., Hooten, A.J., Steneck, R.S., Greenfield, P., Gomez, E., Harvell, C.D., Sale, P.F., Edwards, A.J., Caldeira, K., Knowlton, N., Eakin, C.M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R.H., Dubi, A. and Hatziolos, M.E., 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318(5857): 1737-1742, doi:10.1126/science.1152509.
Hong Kong Environmental Protection Department (EPD), 2010. Review of West Kowloon and Tsuen Wan Sewerage Master Plans-Feasibility Study (Final Report).
Howarth, R., Chan, F., Conley, D.J., Garnier, J., Doney, S.C., Marino, R. and Billen, G., 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 9(1): 18-26, doi:10.1890/100008.
Howarth, R.W., 2008. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae, 8(1): 14-20.
Howarth, R.W. and Marino, R., 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography, 51(1): 364-376.
Hung, J.J., Huang, W.C. and Yu, C.S., 2013. Environmental and biogeochemical changes following a decade's reclamation in the Dapeng (Tapong) Bay, southwestern Taiwan. Estuarine, Coastal and Shelf Science(0): (In Press), doi:http://dx.doi.org/10.1016/j.ecss.2013.03.018.
Hydes, D.J., Kelly-Gerreyn, B.A., Le Gall, A.C. and Proctor, R., 1999. The balance of supply of nutrients and demands of biological production and denitrification in a temperate latitude shelf sea - a treatment of the southern North Sea as an extended estuary. Marine Chemistry, 68(1-2): 117-131.
Ilyina, T., Zeebe, R.E., Maier-Reimer, E. and Heinze, C., 2009. Early detection of ocean acidification effects on marine calcification. Global Biogeochemical Cycles, 23, doi:10.1029/2008gb003278.
IPCC, 2011. Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Impacts of Ocean Acidification on Marine Biology and Ecosystems [Field, C.B., V. Barros, T.F. Stocker, D. Qin, K.J. Mach, G.-K. Plattner, M.D. Mastrandrea, M. Tignor and K.L. Ebi (eds.)]. IPCC Working Group II Technical Support Unit, Carnegie Institution, Stanford, California, United States of America, pp. 164. .
Keeling, R.F., Piper, S.C., Bollenbacher, A.F. and Walker, S.J., 2009. Atmospheric CO2 values derived from in situ air samples collected at Mauna Loa, Hawaii, USA. Data from the Carbon Dioxide Information Analysis Center.
Kelly, R.P., Foley, M.M., Fisher, W.S., Feely, R.A., Halpern, B.S., Waldbusser, G.G. and Caldwell, M.R., 2011. Mitigating local causes of ocean acidification with existing laws. Science, 332(6033): 1036-1037, doi:10.1126/science.1203815.
Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G., Cornwell, J.C., Fisher, T.R., Glibert, P.M., Hagy, J.D., Harding, L.W., Houde, E.D., Kimmel, D.G., Miller, W.D., Newell, R.I.E., Roman, M.R., Smith, E.M. and Stevenson, J.C., 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology- Progress Series, 303: 1-29, doi:10.3354/meps303001.
Kemp, W.M., Testa, J.M., Conley, D.J., Gilbert, D. and Hagy, J.D., 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences, 6(12): 2985-3008.
Lee, K., Tong, L.T., Millero, F.J., Sabine, C.L., Dickson, A.G., Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R.A. and Key, R.M., 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. Geophysical Research Letters, 33, doi:L1960510.1029/2006GL027207.
Levin, L.A., Ekau, W., Gooday, A.J., Jorissen, F., Middelburg, J.J., Naqvi, S.W.A., Neira, C., Rabalais, N.N. and Zhang, J., 2009. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences, 6(10): 2063-2098.

Levitus, S., Antonov, J.I., Boyer, T.P., Locarnini, R.A., Garcia, H.E. and Mishonov, A.V., 2009. Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophysical Research Letters, 36, doi:10.1029/2008gl037155.
Levitus, S., Antonov, J.I., Boyer, T.P. and Stephens, C., 2000. Warming of the world ocean. Science, 287(5461): 2225-2229, doi:10.1126/ science.287.5461.2225.
Lillebø, A.I., Neto, J.M., Martins, I., Verdelhos, T., Leston, S., Cardoso, P.G., Ferreira, S.M., Marques, J.C. and Pardal, M.A., 2005. Management of a shallow temperate estuary to control eutrophication: The effect of hydrodynamics on the system's nutrient loading. Estuarine, Coastal and Shelf Science, 65(4): 697-707.
Liu, S.M., Hong, G.H., Zhang, J., Ye, X.W. and Jiang, X.L., 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2245-2263.
Liu, S.M., Li, R.H., Zhang, G.L., Wang, D.R., Du, J.Z., Herbeck, L.S., Zhang, J. and Ren, J.L., 2011. The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China. Marine Chemistry, 125(1-4): 49-68.
Lohrenz, S.E., Redalje, D.G., Cai, W.-J., Acker, J. and Dagg, M., 2008. A retrospective analysis of nutrients and phytoplankton productivity in the Mississippi River plume. Continental Shelf Research, 28(12): 1466-1475.
Lui, H.K. and Chen, C.T.A., 2011. Shifts in limiting nutrients in an estuary caused by mixing and biological activity. Limnology and Oceanography, 56(3): 989-998.
McNeil, B.I. and Matear, R.J., 2007. Climate change feedbacks on future oceanic acidification. Tellus Series B-Chemical and Physical Meteorology, 59(2): 191-198, doi:10.1111/j.1600-0889.2006.00241.x.
McNeil, B.I. and Matear, R.J., 2008. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 105(48): 18860-4, doi:10.1073/pnas.0806318105.
Midorikawa, T., Inoue, H.Y., Ishii, M., Sasano, D., Kosugi, N., Hashida, G., Nakaoka, S. and Suzuki, T., 2012. Decreasing pH trend estimated from 35-year time series of carbonate parameters in the Pacific sector of the Southern Ocean in summer. Deep-Sea Research Part I-Oceanographic Research Papers, 61: 131-139, doi:10.1016/j.dsr.2011.12.003.

Midorikawa, T., Ishii, M., Saito, S., Sasano, D., Kosugi, N., Motoi, T., Kamiya, H., Nakadate, A., Nemoto, K. and Inoue, H.Y., 2010. Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific. Tellus Series B-Chemical and Physical Meteorology, 62(5): 649-659, doi:10.1111/j.1600-0889.2010.00474.x.
Millero, F.J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica Et Cosmochimica Acta, 59(4): 661-677.
Millero, F.J., 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research, 61(2): 139-142, doi:10.1071/mf09254.
Millero, F.J., Graham, T.B., Huang, F., Bustos-Serrano, H. and Pierrot, D., 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1-2): 80-94, doi:10.1016/j.marchem.2005.12.001.
Moon, J.-H., Pang, I.-C., Yang, J.-Y. and Yoon, W.D., 2010. Behavior of the giant jellyfish Nemopilema nomurai in the East China Sea and East/Japan Sea during the summer of 2005: A numerical model approach using a particle-tracking experiment. Journal of Marine Systems, 80(1-2): 101-114.
National Research Council, 2003. Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academy Press, Washington, D.C.
Neill, M., 2005. A method to determine which nutrient is limiting for plant growth in estuarine waters--at any salinity. Marine Pollution Bulletin, 50(9): 945-955.
Olafsson, J., Olafsdottir, S.R., Benoit-Cattin, A., Danielsen, M., Arnarson, T.S. and Takahashi, T., 2009. Rate of Iceland Sea acidification from time series measurements. Biogeosciences, 6(11): 2661-2668.
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y. and Yool, A., 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059): 681-686, doi:10.1038/nature04095.
Paerl, H.W., 2009. Controlling Eutrophication along the Freshwater-Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries and Coasts, 32(4): 593-601, doi:10.1007/s12237-009-9158-8.
Paerl, H.W., Valdes, L.M., Piehler, M.F. and Stow, C.A., 2006. Assessing the effects of nutrient management in an estuary experiencing climatic change: The Neuse River Estuary, North Carolina. Environmental Management, 37(3): 422-436, doi:10.1007/s00267-004-0034-9.
Pandolfi, J.M., Connolly, S.R., Marshall, D.J. and Cohen, A.L., 2011. Projecting coral reef futures under global warming and ocean acidification. Science, 333(6041): 418-422, doi:10.1126/science.1204794.
Pierce, D.W., Gleckler, P.J., Barnett, T.P., Santer, B.D. and Durack, P.J., 2012. The fingerprint of human-induced changes in the ocean's salinity and temperature fields. Geophysical Research Letters, 39(21), doi:10.1029/ 2012gl053389.
Pierrot, D., Lewis, E. and Wallace, D.W.R., 2006. MS Excel Program Developed for CO2 System Calculations. . Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee., ORNL/CDIAC-105a.
Richardson, A.J., Bakun, A., Hays, G.C. and Gibbons, M.J., 2009. The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends in Ecology & Evolution, 24(6): 312-322.
Santana-Casiano, J.M., Gonzalez-Davila, M., Rueda, M.J., Llinas, O. and Gonzalez-Davila, E.F., 2007. The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Global Biogeochemical Cycles, 21(1), doi:Gb101510.1029/ 2006gb002788.
Schindler, D.W. and Hecky, R.E., 2009. Eutrophication: More nitrogen data needed. Science, 324: 721-722.
SCOPE, An ecological survey on the waters and adjacent to the nuclear power plany in southern Taiwan (Annual Report). National Scientific Committee on the Problems of Environment, Taiwan.
Sharp, J.H., 2010. Estuarine oxygen dynamics: What can we learn about hypoxia from long-time records in the Delaware Estuary? Limnology and Oceanography, 55(2): 535-548.
Sharp, J.H., Yoshiyama, K., Parker, A.E., Schwartz, N.C., Curless, S.E., Beauregard, A.Y., Ossolinski, J.E. and Davis, A.R., 2009. A biogeochemical view of estuarine eutrophication seasonal and spatial trends and correlations in the Delaware Estuary. Estuaries and Coasts, 32: 1023-1043.
Sheu, D.D., Chou, W.C., Chen, C.T.A., Wei, C.L., Hsieh, H.L., Hou, W.P. and Dai, M.H., 2009. Riding over the Kuroshio from the South to the East China Sea: Mixing and transport of DIC. Geophysical Research Letters, 36, doi:L0760310.1029/2008gl037017.
Sheu, D.D., Chou, W.C., Wei, C.L., Hou, W.P., Wong, G.T.F. and Hsu, C.W., 2010a. Influence of El Nino the sea-to-air CO2 flux at the SEATS time-series site, northern South China Sea. Journal of Geophysical Research-Oceans, 115, doi:10.1029/2009jc006013.
Sheu, W.-J., Wu, C.-R. and Oey, L.-Y., 2010b. Blocking and Westward Passage of Eddies in the Luzon Strait. Deep Sea Research Part II: Topical Studies in Oceanography, 57(19–20): 1783-1791, doi:http://dx.doi.org/10.1016/ j.dsr2.2010.04.004.
Shi, D., Xu, Y., Hopkinson, B.M. and Morel, F.M.M., 2010. Effect of ocean acidification on Iron availability to marine phytoplankton. Science, 327(5966): 676-679, doi:10.1126/science.1183517.
Steidinger, K.A., 2009. Historical perspective on Karenia brevis red tide research in the Gulf of Mexico. Harmful Algae, 8(4): 549-561.
Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J. and Nojiri, Y., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 49(9-10): 1601-1622, doi:10.1016/s0967-0645(02)00003-6.
Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D.C.E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Delille, B., Bates, N.R. and de Baar, H.J.W., 2009a. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8–10): 554-577, doi:10.1016/j.dsr2.2008.12.009.
Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D.W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D.C.E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T.S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C.S., Delille, B., Bates, N.R. and de Baar, H.J.W., 2009b. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 56(8-10): 554-577, doi:10.1016/j.dsr2.2008.12.009.
Taylor, D.I., Oviatt, C.A. and Borkman, D.G., 2011. Non-linear responses of a coastal aquatic ecosystem to large decreases in nutrient and organic loadings. Estuaries and Coasts, 34(4): 745-757, doi:10.1007/ s12237-010-9312-3.
Teichberg, M., Fox, S.E., Olsen, Y.S., Valiela, I., Martinetto, P., Iribarne, O., Muto, E.Y., Petti, M.A.V., Corbisier, T.N., Soto-Jimenez, M., Paez-Osuna, F., Castro, P., Freitas, H., Zitelli, A., Cardinaletti, M. and Tagliapietra, D., 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Global Change Biology, 16(9): 2624-2637, doi:10.1111/j.1365-2486.2009.02108.x.
Turner, R.E., Rabalais, N.N. and Justic, D., 2006. Predicting summer hypoxia in the northern Gulf of Mexico: Riverine N, P, and Si loading. Marine Pollution Bulletin, 52(2): 139-148.
United States Environmental Protection Agency, December 2007. Hypoxia in the Northern Gulf of Mexico: An update by the EPA Science Advisory Board, United States Environmental Protection Agency, Washington. D.C.
Verity, P.G., 2010. Expansion of potentially harmful algal taxa in a Georgia Estuary (USA). Harmful Algae, 9(2): 144-152.
Wang, B., 2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine, Coastal and Shelf Science, 69(3-4): 471-477.
Wanninkhof, R., Park, G.H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S.C., McKinley, G.A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H. and Khatiwala, S., 2013. Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 10(3): 1983-2000, doi:10.5194/bg-10-1983-2013.
Washington State Blue Ribbon Panel on Ocean Acidification:, 2012. Ocean Acidification:From Knowledge to Action, Washington State's Strategic Response. H. Adelsman and L. Whitely Binder (eds). Washington Department of Ecology, Olympia, Washington. Publication no. 12-01-015.

Water Science and Technology Board, 2009. Nutrient control actions for improving water quailty in the Mississippi River basin and northern Gulf of Mexico, National Research Council of the National Academies, Washington, D.C.
Weiss, R.F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3): 203-215, doi:Doi: 10.1016/0304-4203(74)90015-2.
Wu, C.-R., 2013. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Progress in Oceanography, 110(0): 49-58, doi:http://dx.doi.org/10.1016/ j.pocean.2012.12.001.
Xu, J., Lee, J.H.W., Yin, K.D., Liu, H.B. and Harrison, P.J., 2011. Environmental response to sewage treatment strategies: Hong Kong's experience in long term water quality monitoring. Marine Pollution Bulletin, 62(11): 2275-2287, doi:10.1016/j.marpolbul.2011.07.020.
Yamamoto-Kawai, M., McLaughlin, F.A. and Carmack, E.C., 2011. Effects of ocean acidification, warming and melting of sea ice on aragonite saturation of the Canada Basin surface water. Geophysical Research Letters, 38, doi:L0360110.1029/2010gl045501.
Yamamoto-Kawai, M., McLaughlin, F.A., Carmack, E.C., Nishino, S. and Shimada, K., 2009. Aragonite Undersaturation in the Arctic Ocean: Effects of Ocean Acidification and Sea Ice Melt. Science, 326(5956): 1098-1100, doi:10.1126/science.1174190.
Yin, K. and Harrison, P.J., 2008. Nitrogen over enrichment in subtropical Pearl River estuarine coastal waters: Possible causes and consequences. Continental Shelf Research, 28(12): 1435-1442.
Yin, K., Harrison, P.J., Broom, M. and Chung, C.H., 2011. Ratio of nitrogen to phosphorus in the Pearl River and effects on the estuarine coastal waters: Nutrient management strategy in Hong Kong. Physics and Chemistry of the Earth, Parts A/B/C, 36(9-11): 411-419.
Yin, K.D., Qian, P.Y., Wu, M.C.S., Chen, J.C., Huang, L.M., Song, X.Y. and Jian, W.J., 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology-Progress Series, 221: 17-28.
Yin, K.D., Song, X.X., Sun, J. and Wu, M.C.S., 2004. Potential P limitation leads to excess N in the pearl river estuarine coastal plume. Continental Shelf Research, 24(16): 1895-1907, doi:10.1016/j.csr.2004.06.014.
Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H. and Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615, doi:10.1126/science.1109004.
Zeebe, R.E., Zachos, J.C., Caldeira, K. and Tyrrell, T., 2008. Carbon emissions and acidification. Science, 321(5885): 51-52, doi:10.1126/ science.1159124.
Zhang, H. and Li, S., 2010. Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer. Journal of Marine Systems, 79(1-2): 65-88.
Zheng, Q.A., Tai, C.K., Hu, J.Y., Lin, H.Y., Zhang, R.H., Su, F.C. and Yang, X.F., 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4): 365-376, doi:10.1007/s10872-011-0035-2.
Zhu, Z.-Y., Zhang, J., Wu, Y., Zhang, Y.-Y., Lin, J. and Liu, S.-M., 2011. Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Marine Chemistry, 125(1-4): 108-116.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code