Responsive image
博碩士論文 etd-0616114-184706 詳細資訊
Title page for etd-0616114-184706
論文名稱
Title
氧化石墨烯於互補式電阻切換記憶體及仿生元件機制探討
Study on Complementary Resistive Switching Memory Mechanism and Bionic Device Of Graphene Oxide Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-11
繳交日期
Date of Submission
2014-07-16
關鍵字
Keywords
脈衝時間依賴可塑性、仿生、互補式電阻切換記憶體、電阻式記憶體、氧化石墨烯
Spike timing dependent plasticity, Graphene oxide, Resistance random access memory, Biomimicry, Complementary resistance switch
統計
Statistics
本論文已被瀏覽 5747 次,被下載 266
The thesis/dissertation has been browsed 5747 times, has been downloaded 266 times.
中文摘要
隨著科技的進步,記憶體須具備高容量及省電以利於可攜式電子產品上,近幾年來快閃記憶體達微縮極限。因此次世代非揮發性記憶體的開發便成為一項熱門研究,其中電阻式隨機存取記憶體(Resistance Random Access Memory, RRAM)擁有結構簡單、高密度、操作速度快、持久度高和儲存時間長等優點。另外,仿生科技近幾年已被廣泛討論,而RRAM具有類似人腦神經元的類比訊號傳遞功能值得研究。
本研究利用氧化石墨稀(Graphene Oxide, GO)結構,使其在RRAM應用面的改善作為研究主軸,而RRAM最迫切的問題在於陣列化後,因電路而產生的潛行電流所導致之誤判情況。透過互補式電阻切換記憶體(Complementary Resistance Switch, CRS)結構可有效解決潛行電流誤判問題。此外,實驗利用RRAM成功模擬出大腦神經元的操作模式,此種模式是以類比訊號儲存,因此未來能夠研發出功能更為強大的記憶體。
值得一提的是,CRS結構雖可解決潛行電流誤判但操作穩定性差。而本研究中成功的利用氧化石墨稀安定性高且導電性良好等特性,使氧化石墨稀互補式電阻切換記憶體(GO CRS)可穩定操作達到三萬次,並經由不同的操作電壓分析CRS無法穩定操作的成因。此外,本研究亦成功使用GO RRAM模擬出類比訊號及脈衝時間依賴可塑性(Spike timing dependent plasticity, STDP)。
Abstract
With the progress of technology, high capacity and scalable are required in the future. Recent years, the physical limit is approached and a next-generation memory is inevitably. In addition, non- volatile memory occupies more than 96% in the memory market, and Resistance Random Access Memory (RRAM) has great advantages such as simple structure, low operation voltage, high operation speed, high endurance and retention. That is the reason RRAM is the candidate in the next generation.
Study on Graphene oxide structure to improve RRAM performance is the topic in this theory. In crossbar structure, a sneak path current will cause misjudgment. Hence, a Complementary Resistance Switch Memory (CRS) is used to solve this misjudgement. However, CRS is disadvantage in endurance. In this experiment, GO CRS is successful to reach 30000 operation times.
We imitate nature species to solve science problems. Similar to neuron, GO RRAM has high capacity, scalable, and low consumption. That is why GO RRAM is one of the Biomimicry memory devices. In this study, we focus on multilayer state and Spike timing dependent plasticity (STDP) of GO RRAM.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 序論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章文獻回顧 3
2-1 記憶體簡介 3
2-1.1 次世代記憶體簡介 3
2-2 互補式電阻切換記憶體(Complementary Resistive Switching) 8
2-2.1 CRS定義 9
2-2.2 CRS操作 10
2-2.3 CRS讀取與寫入 13
2-2.4 CRS與傳統RRAM 15
第三章 實驗設備與原理 17
3-1 多靶磁控濺鍍系統( Multi-Target Sputter) 17
3-2 N & K薄膜特性分析儀(N & K analyzer) 17
3-3 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer) 18
3-4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 20
3-5 拉曼散射光譜儀 Raman 20
3-6 半導體精準電性量測系統 21
第四章實驗相關知識介紹 25
4-1 電性量測相關名詞解釋 25
4-2 材料分析介紹 26
第五章 元件備製與材料分析 27
5-1 元件備製 27
5-2 材料分析結果 28
第六章Graphene oxide CRS量測 35
6-1 元件基本特性介紹 35
6-1.1 何為Graphene Oxide? 35
6-1.2 Graphene oxide RRAM 基本特性 36
6-2 CRS Forming及 單顆元件操作 38
6-3 CRS的量測結果 41
6-3.1 CRS對稱電壓操作結果 41
6-4 Measure 分析 43
6-4.1 量測方法 43
6-4.2 操作結果 43
6-4.3 操作結果分析 43
6-5 GO CRS非對稱性電壓量測 48
6-5.1 GO CRS 操作原理 48
6-5.2 非對稱性的操作方式 48
6-5.3 GO CRS非對稱性電壓及Endurance 49
6-6 結論 54
第七章 氫離子效應 56
7-1 NBTI (Negative Bias Temperature Instability) 56
7-2 氫離子效應CRS 56
7-3 結論 58
第八章 仿生元件 64
8-1 何為仿生? 64
8-2 大腦與神經突觸 64
8-3 Graphene oxide RRAM仿生 69
8-3.1 Multilayer layer state 69
8-3.2 STDP實驗結果 70
8-3.3 Pulse times 70
8-4 結論 70
第九章 總結 79
參考文獻 Reference 81
參考文獻 References
[1] S. Lai, “Non-Volatile Memory Technologies: The Quest for Ever Lower Cost”, International Electron Devices Meeting, pp. 11, 2008
[2] D. A. Buck, “Ferroelectrics for Digital Information Storage and Switching.”, Massachusetts Institute of Technology, Dept. of Electrical Engineering, Master Thesis, 1952.
[3] S. Lai, “Current status of the phase change memory and its future”, International Electron Devices Meeting Technical Digest, pp. 255 - 258, 2003.
[4] 葉林秀、李佳謀、徐明豐、吳德和, “磁阻式隨機存取記憶體技術的發展—現在與未來.”, 物理雙月刊, 26卷, pp. 607- 619, 2004。
[5] K. Kinoshita, T. Tamura, H. Aso, H. Noshiro, C. Yoshida, M. Aoki, Y. Sugiyama and H. Tanaka, “New Model Proposed for Switching Mechanisms of ReRAM”, Proceedings Non-Volatile Semiconductor Memory Workshop, pp. 84-85, 2006.
[6] S. Karg, G. Meijer, J. Bednorz, C. Rettner, A. Schrott, E. Joseph, C. Lam, M. Janousch, U. Staub, F. La Mattina, S. Alvarado, D. Widmer, R. Stutz, U. Drechsler and D. Caimi, “Transition-metal-oxide-based resistancechange memories”, IBM Journal of Research and Development, Vol. 52, No. 4/5, pp. 481-492, 2008.
[7] K. Kim; S. J. Ahn “Reliability investigations for manufacturable high density PRAM”, Proc. IRPS, pp. 157, 2005
[8] G. Burr, B. Kurdi, J. Scott, C. Lam, K. Gopalakrishnan and R. Shenoy“Overview of candidate device technologies for storage-class memory”, IBM Journal of Research and Development, Vol. 52, No. 4/5, pp. 449-464, 2008.
[9] 廖國孝, “錫摻雜二氧化矽薄膜之電阻式記憶體特性研究.”, 國立中山大學,碩士論文, 2011。
[10] 董承瑋, “鋅摻雜二氧化矽薄膜電阻式記憶體之製作與硏究.”, 國立中山大學,碩士論文, 2011。
[11] 莊翔嵐, “超臨界流體處理鎳矽氧化物薄膜再電阻式記憶體之應用研究.”, 國立高雄應用科技大學,碩士論文, 2011
[12] Eike Linn,Roland Rosezin, Carsten Kügeler& Rainer Waser Complementary resistive switches for passive nanocrossbar memories ,Nature ,2010
[13] Ultra-Low-Power Switching and Complementary Resistive Switching RRAM by Single-Stack Metal-Oxide Dielectric C.Y. Tsai, K.C. Huang, Y.W. Ting, Y.W. Liao IEEE
[14] 洪偉修教授. 世界上最薄的材料--石墨烯 (PDF). 98康熹化學報報 (康熹文化事業股份有限公司). 2009-11, 11月號 [2010-10-06].
[15] O. Akhavan, " Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner", Carbon, Vol. 50, pp. 1853-1860, 2012.
[16] Diplom-Ingenieur Elektrotechnik Origin of Hopping Conduction in Graphene-Oxide-Doped SiliconOxide Resistance RandomAccess Memory DevicesKuan-Chang Chang, Rui Zhang, Ting-Chang Chang
[17] M. F. Chang, S. J. Shen, “A Process Variation Tolerant Embedded Split-Gate Flash Memory Using Pre-Stable Current Sensing Scheme”. J. Solid-State Circuits, vol. 44, pp. 987-994, 200
[18] 潘盈志,鋯摻雜氧化矽薄膜電阻式記憶體之製作與研究中山大學 碩士論文2012

[19] Meyer, J.C. et al.. Imaging and Dynamics of Light Atoms and Molecules on Graphene. Nature. 2008, 454: 319
[20] V. Kumar, Chris H. Kim, and Sachin S. Impact of NBTI on SRAM Read Stability and Design for Reliability Sanjay Sapatnekar Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
[21] 朱天健,鉿摻雜氧化矽薄膜之電阻切換機制研究 中山大學 碩士論文 2012
[22] 珍妮‧班娜斯著,張曌菲譯「人類的出路—探尋生物模擬的奧妙」,,胡桃木出版社,1998年。
[23] 盛祖杭,神經元突觸傳遞的細胞和分子生物學(神經生物學基本原理) 2001
[24] Yang Dan , Mu-Ming Poo Physiological ReviewsPublished 86no,Spike Timing-Dependent Plasticity: From Synapse to Perception. July 2006Vol..
[25] Duygu Kuzum,* Rakesh G. D. Jeyasingh, Byoungil Lee, and H.-S. Philip Wong,Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing, Nature Materials 2011
[26] Synaptic Modifications in Cultured Hippocampal Neurons:Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type
[27] 林宜樺Noise Driven Synchronization and Plasticity of a Developing Neural Network臺灣師範大學 碩士論文2010
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code