Responsive image
博碩士論文 etd-0616114-211634 詳細資訊
Title page for etd-0616114-211634
論文名稱
Title
60GHz天線增益提升之技術設計
Gain Enhancement Techniques for 60 GHz Antennas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-09
繳交日期
Date of Submission
2014-07-26
關鍵字
Keywords
高增益、覆板、60GHz、超穎材料
Metamaterial, High gain, Superstrate, 60 GHz
統計
Statistics
本論文已被瀏覽 5775 次,被下載 3081
The thesis/dissertation has been browsed 5775 times, has been downloaded 3081 times.
中文摘要
西元2001年,美國聯邦通訊委員會FCC (Federal Communications Commission)保留57-64 GHz的頻帶作為不需要申請執照之無線通訊應用。由於此頻段不需要任何的執照申請,因此越來越受到注意。而又因為有相當大的頻寬在此頻段內資料傳輸量可以達到數個Gbps,比現有WLAN (Wireless Local Area Network)傳輸還要快上40-100倍。隨著操作頻率提高至60 GHz,用來實現短距離高位元率無線傳輸時,會受到大氣中氧分子吸收效應造成的衰減,但此衰減可經由高增益指向性天線做為補償。
為了克服上述提到的衰減問題,我們主要希望設計出一高增益天線。為了高增益的需求,我們運用了覆板概念、有效輻射面積、傳輸線模型理論來有效地提升增益表現,進而成功設計出一高增益覆板天線;接著,操作於60 GHz、折射率趨近於零的超穎材料被應用在八木天線的增益提升。
於本論文中,我們成功地設計出一高增益天線。所設計出來的覆板天線其輻射方向為垂向,最高增益達到15 dBi,且於頻帶內擁有平坦的增益表現。所設計出來使用超穎材料的八木天線,負載上三層導向器後可以有4.6 dB的增益提升且其最高增益可達10.44 dBi。
Abstract
In 2001, the FCC (Federal Communications Commission, USA) allocated a bandwidth of 7 GHz in the range from 57 to 64 GHz. Because the spectrum is unlicensed, it is receiving more and more attention. For this communication, the availability of several GHz bandwidths can be realized in multi-Gbps which can be 40–100 times faster than current WLAN (Wireless Local Area Network) technologies. This spectrum used for short-range wireless applications has high signal attenuation caused by the absorption of oxygen molecules as operating frequency rises to 60 GHz. This disadvantage can be compensated for by using high-gain directive antennas.
To overcome the problem mentioned above, we aimed to design a high-gain antenna. For the requirement of high gain, we use the concept of superstrate, effective radiated area, and transmission line model to enhance the performance of gain. We also design a high gain superstrate antenna successfully. Then, a zero-index MTM based unit-cell operating at 60 GHz has been designed for gain enhancement of Yagi antenna.
In this thesis, we design high-gain directive antenna successfully. The proposed superstrate antenna possesses broadside radiation, maximum gain of 15 dBi, and flat gain response within 57-66 GHz. The proposed zero-index metamaterial antenna loaded with three layers of MTM directors can enhance the gain by about 4.6 dB which achieves a maximum gain of 10.44 dBi.
目次 Table of Contents
論文審定書 i
誌 謝 ii
摘 要 iii
Abstract iv
第一章 序論 1
1.1研究背景與動機 1
1.2研究方法和目的 2
1.3章節介紹 2
第二章 60 GHz天線設計 3
2.1微帶天線介紹 3
2.2 60 GHz天線設計 5
第三章 提昇天線增益之設計 8
3.1覆板理論 8
3.2具覆板之天線設計 9
3.3有效輻射面積理論 11
3.4具雙層覆板之天線設計 14
3.4.1傳輸線理論 14
3.4.2背向輻射之改善 18
3.5製作敏感度探討 23
3.6天線與手機機殼整合 24
3.7小結 29
第四章 超穎材料簡介 30
4.1超穎材料介紹 30
4.2負介電係數結構 32
4.3負導磁係數結構 33
4.4集中波束原理 34
第五章 超穎材料天線設計 35
5.1單位晶胞設計 35
5.2 超穎材料應用於天線 38
5.3 提升增益探討 43
第六章 結論 49
參考文獻 50
參考文獻 References
[1] P. Smulders, “Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp.140 -147 2002.
[2] R. C. Daniels and R. W. Heath, “60 GHz wireless communications: Emerging requirements and design recommendations,” IEEE Veh. Technol. Mag., vol. 2, no. 3, pp. 41–50, Sep. 2007.
[3] F. Giannetti, M. Luise, and R. Reggiannini, “Mobile and personal communications in 60 GHz band: A survey,” Wirelesss Personal Comunications, vol. 10, pp. 207–243,1999.
[4] Y. T. Lo, “Theory and Experiment on Microstrip Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-27, 1979, pp. 137-145
[5] D. M. Pozar, “A Microstrip Antenna Aperture-Coupled to a Microstrip Line,” Electron. Lett., Vol. 21, 1985,pp. 49-50.
[6] N.G. Alexopoulos and D.R. Jackson, “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Trans. Antennas Propag., vol. AP-32, no. 8, pp. 807–816, Aug. 1984
[7] H. Vettikalladi, O. Lafond, and M. Himdi, “High-efficient and high-gain superstrate antenna for 60-GHz indoor communication,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1422–1425, 2009
[8] J. Ju, D. Kim, and J. Choi, “Fabry-perot cavity antenna with lateral metallic walls for WiBro base station applications,” Electron. Lett., vol. 45, no. 3, pp. 141–142, 2009.
[9] A. Foroozesh and L. Shafai, “Effects of artificial magnetic conductors in the design of low-profile high gain planar antennas with high-permittivity dielectric superstrate,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 10–13, 2009.
[10] A. Pirhadi, H. Bahrami, and J. Nasri, “Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 2101–2106, Apr. 2012
[11] A. Foroozesh and L. Shafai, ” Investigation into the effects of the reflection phase characteristics of highly-reflective superstrates on resonant cavity antennas,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp. 3392–3396, Oct. 2010
[12] C.A. Balanis, Antenna theory analysis and design, 2nd ed., John Wiley & Sons, 1997

[13] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison Wesley Press, New Jersey, USA, 1989
[14] R. Gardelli, M. Albani, and F. Capolino, “Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement,” IEEE Trans. Antennas Propag., vol. 54, no. 7, pp. 1979–1990, Jul. 2006
[15] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ,” Sov. Phys. Usp., vol. 10, no. 4, pp. 509–514, Jan. –Feb. 1968.
[16] J. B. Pendry, “Low-frequency plasmons in thin wire structures,” J. Phys.:Condens. Matter, vol. 10, pp. 4785–4809, Mar. 1998.
[17] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz,“Composite medium with simultaneously negative permeability and permittivity, ” Phys. Rev. Lett., vol. 84, no. 18, pp. 4187-4187, May 2000
[18] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors andenhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2075–2083, Nov. 1999.
[19] R. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag., vol. 51, pp. 1516–1529, Jul. 2003.
[20] R. F. Harrington, Time-Harmonic Electromagnetic Fields, John Wiley & Sons, New York, USA, 2001
[21] X. Chen, T. M. Grzegorczyk, Bae-Ian Wu, J. Pacheco, Jr. and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, vol. 70, 016608, 2004.
[22] R.S. Elliott, Antenna theory and design, revised ed., John Wiley & Sons, New Jersey, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code