Responsive image
博碩士論文 etd-0616115-104241 詳細資訊
Title page for etd-0616115-104241
論文名稱
Title
使用可程式化轉導放大器快速鎖定技術用於鎖相迴路設計
Fast Locking Technique by Using a Programmable Operational Transconductor for a Phase Lock Loop Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-16
關鍵字
Keywords
壓控振盪器、電荷幫浦、相位頻率偵測器、上/下計數器、可程式化轉導放大器、鎖相迴路、雙模計數器
PFD, VCO, Charge Pump, PLL, Up/Dn Counter, Programmable OTA
統計
Statistics
本論文已被瀏覽 5663 次,被下載 26
The thesis/dissertation has been browsed 5663 times, has been downloaded 26 times.
中文摘要
本論文提出了一個高調頻範圍,低相位雜訊與快速鎖定全積體化除整數之頻率合成器。此頻率合成器主要應用於IEEE 802.11ac Wi-Fi,提供4.2GHz至5.7GHz的本地振盪器,並應用於射頻收發機的前端電路。本論文所提出的頻率合成器包含頻率偵測器(Phase / Frequency Detector, PFD)及電荷幫浦(Charge Pump, CP)、低通迴路濾波器(Low Loop filter, LPF)、壓控振盪器(Voltage control Oscillator, VCO)、可程式化轉導放大器(Programmable Operational Transconductance Amplifier, P-OTA) 、電壓比較器(Comparator) 、鎖定偵測器(Lock Detector)、控制邏輯閘(Control Logic)、上下計數器(Up/Down Counter)以及雙模計數器(Pluse-Swallow Counter)。
在此系統中使用P-OTA,在V_tune與LPF之間藉由回授電壓進而提升gm值,將加大流入LPF之電流,以達到快速鎖定之目的。
所提出的電路架構使用TSMC 90nm 1P9M CMOS製程實現,經模擬結果顯示功率消耗為11.37mW,鎖定時間為5.1μs,輸出頻率為4.046GHz~5.742GHz,晶片面積為684um × 531um。
Abstract
This thesis presents a wide tuning, low phase noise, and fast locking CMOS integer-N frequency synthesizer with 1 V power supply. It can be used for IEEE 802.11ac unlicensed band of Wi-Fi (Wireless Fidelity). It provides one ration frequency ranged from 4.046GHz to 5.742GHz for the local oscillator in RF front-end circuits. The proposed frequency synthesizer consists of a Phase / Frequency Detector, a Charge Pump, a voltage control oscillator, Programmable Operational Transconductance amplifier (P-OTA), Comparator, Control Logic, Up/Down Counter, and a pulse-swallow divider. Using the P-OTA in PLL system, by V_tuneand LPF feedback voltage to increase the gm value that increase in the LPF current to speed up the lock time.
The proposed PLL is implemented in TSMC 90nm 1P9M RF technology. The simulation results show that the power dissipation is 11.37mW, the output frequency is 4.046GHz~5.742GHz, the lock time is 5.1μs , and the chip size is 684um × 531um.
目次 Table of Contents
第1章 緒論 1
1.1 研究動機 1
1.2 論文組織架構 1
第2章 鎖相迴路基本觀念 2
2.1 鎖相迴路基礎觀念 2
2.2 鎖相迴路各項架構及操作理 3
2.2-1 相位頻率偵測器(Phase Frequency Detector, PFD) 3
2.2-2 電荷幫浦(Charge Pump, CP) 5
2.2-3 迴路濾波器(Loop Filter, LPF) 6
2.2-4 電壓控制振盪器(Voltage Control Oscillator, VCO) 7
2.2-5 除頻器(Divider) 9
2.3 加速鎖定類型鎖相迴路介紹 10
2.3-1 使用連續時間相位頻率偵測器快速鎖定技術於鎖相迴路 10
2.3-2 使用雙斜率相位頻率偵測器與充電泵快速鎖定鎖相迴路 12
2.3-3 結論 13
第3章 鎖相迴路之系統特性分析及實現 14
3.1 架構簡介 14
3.2 相位頻率偵測器(Phase Frequency Detector, PFD) 17
3.3 電荷幫浦(Charge pump, CP) 20
3.4 可程式化轉導放大器 Programmable OTA 23
3.5 迴路濾波器與轉導放大器(Low Pass Filter, LPF and,OTA) 25
3.6 壓控震盪器VCO 29
3.7 比較器 Comparator 31
3.8 除頻器(Divider) 33
3.9 上/下計數器UP/DN Counter 36
3.10 鎖定偵測器Lock Detector 38
3.11 電壓比較邏輯(Voltage Comparator Logic) 39
3.12 電壓選擇器(Voltage Selection) 40
3.13 控制邏輯(Control Logic) 41
3.14 暫存器(Register) 41
第4章 使用可程式化轉導放大器於鎖相迴路之電路模擬 42
4.1 簡介 42
4.2 鎖相迴路之各項Block模擬 42
4.2-1 頻率相位偵測器模擬 42
4.2-2 電荷幫浦模擬 44
4.2-3 壓控震盪器模擬 44
4.2-4 可程式化轉導放大器模擬 46
4.3 鎖相迴路系統模擬 47
第5章 鎖相迴路電路佈局與模擬 48
5.1 鎖相迴路電路佈局圖 48
5.2 效能比較 50
第6章 結論 51
6.1 結論 51
6.2 未來改進方向 51
參考文獻 References
[1] C.Y. Li; C.L. Lee; M.H. Hu, and H. P. Chou, “A Fast Locking-in and Low Jitter PLL With a Process-Immune Locking-in Monitor,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2216-2220, October 2014.
[2] 劉深淵、楊清淵, “鎖相迴路, ” 滄海書局, 2006
[3] H. C. Kuo; B. Y. Cheng, “A dual-Slop Phase frequency detector and charge pump architecture to achieve fast locking of phase-locked loop,” IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, vol.50, no.11, pp.892,896, Nov 2003.
[4] F. M. Gardner, “Charge-pump phase-locked loops, ” IEEE Trans. Commun , vol COM-28, pp. 1849-1858, Nov, 1980.
[5] J. Rogers, C. Plett, F. Dai , “Integrated circuit design for high-speed frequency synthesis, ” 2006.
[6] B. Razavi, “Design of analog CMOS integrated circuits,” New York:McGraw-Hill, 2001.
[7] J. Pan, and Y. Inoue, “A Fast Lock Phase-Locked Loop Using a Continuous-Time Phase Frequency Detector,” IEEE Conference on Electron Devices and Solid-State Circuit, pp.393-396, Dec 2007.
[8] K.-H cheng, W.-B Yang and C.-M Ying. ”A Dual-Slop Phase Frequency Detector and Charge Pump Architecture Fast Locking of Phase-Locked Loop,” IEEE Journal of Solid-State Circuit, vol. 33, pp.1 572-1575, Oct. 1998.
[9] B. Lee, C. H. Jung, S. C. Park, and S.W. Kim, “Fast-locking phase-error compensation technique in PLL,” 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, October. 29- November 1 2012.
[10] I.T. Lee, Y.T. Tsai, S. I. Liu, “A fast-locking phase-locked loop using CP control and gated VCO, ” 2012 International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pp. 23-25, April 2012.
[11] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1723-1732, November 1996.
[12] X. Xu, H. Liu and S. Ao, “Design of low phase noise and fast locking PLL frequency synthesizer.” In 2011 International Conference on Electric Information and Control Engineering, pp. 4113-4116, April 2011.
[13] S.H. Kim and S. B. Cho, “Low phase noise and Fast locking PLL Frequency Synthesizer for a 915MHz ISM Band,” International Symposium of Integrated Circuits, pp. 592-595, September 2007.
[14] Y. F. Kuo; R. M. Min; C. Y. Liu, “A Fast Locking PLL With Phase Error Detector,” 2005 IEEE Conference on Electron Devices and Solid-State Circuits, pp.423-426, Dec. 2005
[15] S. L. Kai ,M. S. Sulaiman, and Z. Yusoff, “Fast-Lock Dual Charge Pump Analog DLL using Improved Phase Frequency Detector,” International Symposium on VLSI Design, Automation and Test, 2007. (VLSI-DAT), pp. 1-5, April 2007.
[16] Jianbin Pan; Yuanfu Zhao; Xin Liang, “A high-performance CMOS charge pump for PLLs, ” International Conference on Microelectronics, pp.98-101, 1Dec. 2009
[17] J. Krupar, R. Srowik and J. Schreiter, “Minimizing Charge Injection Errors In High-Precision, High-Speed SC-Circuits”, IEEE ISCAS, Vol. 1, May 2001, pp.727–730.
[18] B.P. Das, N. Watson, Y. Liu, “Electronically tunable PLL controller design using OTA, ” IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp.198-202, Dec. 2010
[19] M. Amourah, S. Krishnegowda, and M. Whately, “A novel OTA-based fast lock PLL,” IEEE of Custom Integrated Circuits Conference, pp. 1-4, September 2013.
[20] Y. J. Lai and T. H. Lin, “A 10-GHz CMOS PLL with an Agile VCO Calibration,” in Asian Solid-State Circuits Conference, pp. 213-216, 2005.
[21] Jia Lin, A. Cabuk, J.G Ma, K. S. Yeo, A.V. Do , “A 52 GHz VCO with low phase noise implemented in SiGe BiCMOS technology, ” The 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, pp. 264-269, July 2003
[22] Lam. C, Razavi. B, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-um CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 43, no.9, pp.2099-2108, September 2008.
[23] R. Jacob Baker, “CMOS Circuit Design, Layout and Simulation,” 3nd edition Wiley Interscience, 2005 pp.911.
[24] F. J. Hsieh and S. K. Kao, “Fast locking PLL with all-digital locked-aid circuit,” 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 15-17, December 2010.
[25] M. D. Tsai, Y. H. Cho, H. Wang, “A 5-GHz low phase noise differential colpitts CMOS VCO, ” Microwave and Wireless Components Letters, vol.15, no.5, pp.327,329, May 2005
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code