Responsive image
博碩士論文 etd-0616115-143014 詳細資訊
Title page for etd-0616115-143014
論文名稱
Title
鈦合金/碳纖維/聚醚醚酮混和型複合材料受低速衝擊後之殘留性質討論
Residual Mechanical Properties of Ti/APC-2 Hybrid Composite Laminates after Low-Velocity Impact
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-08-13
關鍵字
Keywords
複合材料、低速衝擊、拉伸實驗、極限強度、碳纖維/聚醚醚酮、鈦合金
APC-2, Low-velocity impact, Tensile test, Ultimate Strength, Titanium, Composite
統計
Statistics
本論文已被瀏覽 5668 次,被下載 27
The thesis/dissertation has been browsed 5668 times, has been downloaded 27 times.
中文摘要
本論文主要目的為探討鈦合金/碳纖維/聚醚醚酮(Ti/APC-2)複材積層板在室溫下承受衝擊後機械性質之變化。
實驗中所使用之試片分別為五層試片[Ti/(0/90)2/Ti]s,以及九層試片[Ti/(0/90)2/Ti /(0/90)2/ Ti]s,其中APC-2之疊序為十字疊(Cross-ply) ,而為了使鈦合金與APC-2疊層之間有良好的黏結力,必須要先對鈦合金施以鉻酸陽極處理,之後以修正隔膜成型法配合升溫固化進行熱壓。實驗採用落重試衝擊試驗,將一沖頭以自由落體之方式衝擊試片,衝擊高度有0.7 m、0.75 m及0.8 m三種,衝擊重量有22公斤及30公斤兩種,衝擊後再經靜態拉伸試驗測量衝擊後積層板的機械性質。
經由實驗結果之分析,APC-2相較於延展性好的鈦合金更容易因衝擊造成斷裂,代表著APC-2其抗衝擊能力較差,也使得纖維在複合材料中扮演加強材、提高材料之強度的能力下降,故造成其抗拉強度下降。而由拉伸試驗數據得知,未承受衝擊之Ti/APC-2複合材料試片其強度皆比受衝擊後之試片來的高,且衝擊效應會造成複合材料之極限強度及彈性模數大幅度的下降,最明顯的衰退分別為五層複材積層板的極限強度下降至未衝擊的29%及九層試片的26%。積層板在經過衝擊後彈性模數皆有大幅度的下降,但五層積層板的殘留性質皆優於九層積層板,意味著並非越厚的積層板經衝擊過後殘留強度越高。
Abstract
This thesis aims to study the mechanical properties of Ti/APC-2 composite laminates after low velocity impact. Five layers composite laminates [Ti/(0/90)2/Ti]s and nine layers composites laminate [Ti/(0/90)2/Ti]s were tested. APC-2 was stacked according to cross-ply [0/90]2 sequences. To improve the bonding capability between Ti sheets and APC-2, we adopted the chromic acid anodic method after that the modified diaphragm curing process was used to fabricate Ti/APC-2 hybrid composite laminates.
Experimental results were obtained by using drop-weight test with 1mm diameter hemispherical nosed projectile. Three different hights-0.7 m, 0.75 m, 0.8 m and two weights-22 kg, 30 kg were adopted. After impact testing, we used static tensile test to measure the ultimate strengths and elastic modulus.
From the sample after low velocity impact knows that APC-2 is easy to be fracture than Ti, it means APC-2 have worst ability to resist the impact. In addition, the fiber of the reinforcements fracture, causing the mechanical properties of the composite decrease. By studying the tensile test data, we find out that non-impact composite samples has better mechanical properties than samples after impact. Also, impact cause significantly reduce of the mechanical properties, five layers composite sample reduce to 29% of the non-impact sample and nine layers sample reduce to 26%. Although nine layers sample present better ultimate strength without impact than five layers composite, the residual stiffness modulus of nine layers composite is lower than five layers composite after low-velocity impact. The result shows composite materials are not the thicker the better after impact.
目次 Table of Contents
目錄
摘要 i
ABSTRACT ii
圖目錄 v
表目錄 vii
1 第一章 緒論 1
1-1 前言 1
1-2 複合材料簡介 1
1-3 研究方向 1
1-4 文獻回顧 2
2 第二章 實驗方法及程序 4
2-1 實驗材料簡介 4
2-1-1 鈦合金 4
2-1-2 碳纖維/聚醚醚酮APC-2(AS-4/PEEK) 4
2-2 實驗流程圖 5
2-3 儀器設備 6
2-4 鈦合金/碳纖維/聚醚醚酮(Ti/APC-2)複材積層板之製程 6
2-4-1 鈦合金處理 6
2-4-2 碳纖維/聚醚醚酮(APC-2)之前處理 7
2-4-3 熱壓製程 7
2-4-4 試片製作與分類 8
2-5 低速衝擊實驗 8
2-6 靜態拉伸實驗 9
2-7 掃描式電子顯微鏡(SEM) 9
3 第三章 實驗結果 20
3-1 鈦合金陽極處理 20
3-2 低速衝擊實驗 20
3-3 靜態拉伸實驗 21
4 第四章 分析與討論 42
4-1 1 複合材料積層板能量吸收理論 42
4-2 複合材料之混和理論 42
4-3 複合材料積層板承受衝擊後之拉伸實驗 43
4-3-1 不同衝擊高度之比較 43
4-3-2 試片觀察與分析 45
5 第五章 結論 51
6 參考文獻 52
參考文獻 References
1. Bishop SM. The mechanical performance and impact behaviour of carbon-fiber reiforce PEEK. Composite Structure. 1985; 3: 295-318.
2. Prichard JC and Hogg P J. The role of impact damage in post-impact compression testing. Composite Science and Technology. 1990; 21: 503-511.
3. Karger-Kocsis J, Yuan Q, Mayer J and Wintermantel E. Transverse impact behavior of knitted carbon-fiber frabric-reinforced thermoplastic composite sheets. Journal of Thermoplastic Composite Materials. 1997; 10: 163-172.
4. Tai NH, Yip MC and Lin JL. Effects of low-energy impact on the fatigue behavior of carbon expoy composites. Composite Science and Technology. 1998; 58: 1-8.
5. Mohotii D, Ngo T, Raman SN, Ali M and Mendis P. Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact. Materials and Design. 2014; 56: 696-713.
6. Siow YP and Shim VPW. An experimental study of low velocity impact damage in woven fiber composite. Journal of Composite Materials-Lancaster. 1998; 32: 1178-1102.
7. Jones N and Birch R S. Low Velocity Perforation of Mild Steel Circular Plates With Projectiles Having Different Shaped Impact Faces. Journal of Pressure Vessle Technology. 2008; 130: 031205-1-031205-11.
8. Holmen JK, Hopperstad OS and Børvik T. Low-velocity impact on multi-layered dual-phase steel plates. International Journal of Impact Engineering. 2015; 78: 151-177.
9. Mohagheghian I, McShane GJ and Stronge WJ. Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence. International Journal of Impact Engineering. 2015; 80: 162-176.
10. Antoinat L, Kubler R, Achard G, Barou JL, Viot P and Barralier L. Low velocity perforation of an aluminum ally: experiments and simulations. 13th International Conference on Fracture. 2013.
11. Gustin J, Joneson A, Mahinfalah M and Stone J. Low velocity impact of combination Kevlar/carbon fiber sandwich composites. Composite Structures. 2005; 69: 396-406.
12. Nakatani H, Kosaka T, Osaka K and Sawada Y. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. Composites: Part A. 2011; 42: 772-781.
13. Potti SV and Sun CT. Prediction of impact induced penetration and delamination in thick composite laminates. International Journal of Impact Engineering. 1997; 19: 31-38.
14. Manes A, Gilioli A, Sbarufatti C and Giglio M. Experimental and numerical investigations of low velocity impact on sandwich panels. Composite Structures 2013; 99: 8-18.
15. Yu GC, Wu LZ, Ma L and Xiong J. Low velocity impact of carbon fiber aluminum laminates. Composite Structures. 2015; 119: 757-766.
16. Nasirzadeh R and Sabet AR. Study of foam density variations in composite sandwich panels under high velocity impact loading. International Journal of Impact Engineering. 2014; 63: 129-139.
17. Ghalami-Choobar M and Sadighi M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber-metal laminates skins and polyurethane core. Aerospace Science and Technology. 2014; 32: 142-152.
18. 陳金冠. 鈦合金/碳纖維/聚醚醚酮複合材料積層板承受低速衝擊後之機械性質探討. 2012; 國立中山大學機械所碩士論文.
19 林正傑. 碳纖維/聚二醚酮複合材料積層板之衝擊變形機制與數值模擬. 1998; 中山大學機械所碩士論文.
20. 周仁傑. 衝擊及溫度效應對碳纖維/聚二醚酮複材積層板之破壞機制探討. 2000; 國立中山大學機械所碩士論文.
21. 歐陽中. 心蕊織物複合材料衝擊後壓縮性質之研究. 1998; 私立逢甲大學碩士論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code