Responsive image
博碩士論文 etd-0616116-142851 詳細資訊
Title page for etd-0616116-142851
論文名稱
Title
具有高熱絕緣能力之紅外線氣體感測元件之研究
Research of Infrared Gas Sensor with High Thermal Isolation Capacity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-01
繳交日期
Date of Submission
2016-07-16
關鍵字
Keywords
面型微加工、熱絕緣、紅外線氣體感測器、微機電、NDIR氣體感測
Infrared gas sensors, NDIR gas sensing, Thermal isolation, Surface micromachining, MEMS
統計
Statistics
本論文已被瀏覽 5706 次,被下載 169
The thesis/dissertation has been browsed 5706 times, has been downloaded 169 times.
中文摘要
市面上販售的氣體感測器,主要分為化學式與光學式兩種,前者售價便宜但有著靈敏度不佳以及使用壽命短的缺點,後者因為微機電技術的成熟而逐漸為主流,本論文以光學式為主,著重於探討紅外線氣體感測器中感測器的部分,長遠目標除了達到多種氣體偵測的功能外,還能藉由調整熱導值而具有諧調響應度的功能。
在本論文中,利用薄膜沉積、曝光、乾濕蝕刻等製程完成面型微加工的架構,熱型紅外線感測器主要是藉由材料間不同的特性,當吸收層吸收紅外光後,引起電阻電壓等變化,再搭配感測電路讀取數據變化。在光學吸收部分,利用金屬反射層結合雙層氮化矽吸收層增加紅外光吸收,在熱絕緣部分,除了以濕式蝕刻去除犧牲層二氧化矽使元件懸浮外,額外沉積一熱絕緣層二氧化鋯,兩者皆可以減少固態的熱傳導使得元件的靈敏度更加精確。二氧化鋯的熱導值約為1.8 W/mK,具有相當良好的隔熱效果,而為了證實其隔熱效果則利用熱像儀拍攝熱影像圖。我們選用非晶矽做為主動層的原因是因為它具有高的電阻溫度係數且符合標準的電子電路製程。整體來說,我們完成了一個具有良好熱絕緣結構的感測元件。
Abstract
The gas sensors are generally divided into chemical and optical type in the market, the former has low price but it has poor sensitivity and short life of the shortcomings, in recent years, since the MEMS technology is full developed, the latter has become mainstream. Therefore, in this thesis, we investigate about optical gas sensor further. The direction of research for this thesis is focus on infrared gas sensor. The gas sensor can achieve multi-gas detection and responsivity can be tuned by adjusting thermal conductance are the final aim of this sensor.
In the thesis, surface micromachining structure are accomplished by film deposition、exposure、dry and wet etching. A bolometer employs a characteristic of thermal sensitive layer as it changes its sheet resistance according to the change of the temperature. It can convert incident IR radiation into an electrical signal by sense circuit. In terms of optical absorbing, we combine Au reflecting layer with double silicon nitride absorbing layer. Looking forward to increase infrared absorption. In terms of thermal isolation, using wet etching silicon dioxide to achieve suspension structure, in addition, ZrO2 is deposited as a thermal isolation layer. Both are effective decrease solid state heat conduction, so that, Responsivity will be more accurate. The thermal conductance of ZrO2 is 1.8 W/mK and it has excellent heat insulation. In order to confirm the insulation effect, thermal imager is be used. In terms of thermos-sensing layer, α-Si has a high value of the temperature coefficient of resistance and compatibility, so it is chosen to act active layer. In conclusion, we achieve a sensor with great thermal isolation capacity.
目次 Table of Contents
論文審定書 i
公開授權書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xii
第一章、緒論 1
1.1前言 1
1.1.1 紅外線簡介 1
1.2 紅外線感測器簡介 2
1.3 氣體感測器 5
1.3.1 化學式氣體感測器 6
1.3.2 紅外光氣體感測器 7
第二章、架構與儀器原理 13
2.1 微機電(Micro Elector Mechanical System, MEMS)簡介 13
2.1.1 面型微加工(Surface micromachining) 13
2.1.2 體型微加工(Bulk micromachining) 14
2.2 熱輻射簡介 15
2.2.1 微熱輻射熱阻性感測器(Micro-bolimeter)原理 15
2.2 2 紅外光吸收層 16
2.2.3 電阻溫度係數反應層 16
2.2.4 熱絕緣結構之設計 17
2.2.5 感測器性能參數 18
2.2.6 雜訊分析 19
2.3 靜電力驅動器結合微機電技術 20
2.4 感測器整體架構 23
2.5 製程儀器原理 24
2.5.1 電漿增強式化學氣相沉積系統 (Plasma-enhanced chemical vapor deposition, PECVD) 24
2.5.2 光阻塗佈機 (Spin coating) 24
2.5.3 曝光 (Exposure) 25
2.5.4 雙電子槍蒸鍍系統 (Dual E-Beam Evaporator) 26
2.5.5 感應耦合型電漿蝕刻 (Inductive Coupled Plasma, ICP) 27
2.5.6 多靶磁控濺鍍系統 (Multi-Target Sputter) 28
2.6 量測儀器原理 30
2.6.1 四點探針 30
2.6.2 場發射型掃描式電子顯微鏡 (SEM) 31
2.6.3 白光干涉儀 32
第三章、實驗流程 33
3.1 元件製程步驟 33
3.1.1 清洗基板 (Substrate Cleaning) 33
3.1.2 氮化矽的沉積 33
3.1.3 金反射層的沉積 36
3.1.4 犧牲層二氧化矽的沉積 37
3.1.5 沉積氮化矽當支架 39
3.1.6 沉積二氧化鋯作為熱絕緣層 41
3.1.7 底吸收層氮化矽的沉積 42
3.1.8 沉積非晶矽作為電阻溫度係數層 43
3.1.9 表面吸收層氮化矽的沉積 45
3.1.10 電子束蒸鍍上下電極 47
3.1.11 去除犧牲層二氧化矽 48
第四章、實驗結果與討論 49
4.1 元件懸空SEM及熱影像圖 49
第五章、結論 53
參考文獻 54
參考文獻 References
[1] M. Almasri, B.Xu and J.Castracane, "Amorphous Silicon Two-Color Microbolometer for Uncooled IR Detection," IEEE SENSORS JOURNAL, vol. 6, Apr. 2006.
[2] B. S. Huang and M. H. Yang, Thermal radiation technology the construction a non-contact new fire detection system, Tainan: Department of Electrical Engineering, National Cheng Kung University, 2007.
[3] T. S. Xu and Z. M. Chen, Research circuit reads the infrared thermal resistance, Kaohsiung: Department of Photoelectric and Communications Engineering, National Kaohsiung University of Applied Sciences, 2012.
[4] M. H. Chang and Y. L. Ou, Electro calibration resistive sensor calibration methods, Zhongli: Department of Photoelectric Science, National Central University, 2007.
[5] B. Wang, J. Lai, H. Li, H. Hu and S. Chen, "Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer," Infrared Physics & Technology, vol. 57, pp. 8-13, 2013.
[6] L. X. Wang, X. A. Li, "Preparation of VO2 microbolometer for CO2 gas detection," IEEE International Conference on Microwave and Millimeter Wave Technology, pp. 1774-1777, May. 2010.
[7] Q. Cheng, S. Paradis, T. Bui, and M. Almasri, "Design of Dual-Band Uncooled Infrared Microbolometer," IEEE SENSORS JOURNAL, vol. 11, no. 1, pp. 167-175, Jan. 2011.
[8] Y. W. Chen and J. X. Chen, Apartment domestic water heater simulation analysis of carbon monoxide poisoning, Hsinchu: Department of Mechanical Engineering, Chiao Tung University, 2013.
[9] J. Kwon, "A study on NDIR-based CO2 sensor to apply remote air quality monitoring system," IEEE ICROS-SICE International Conference, pp. 1683-1687, Aug. 2009.
[10] J. H. Han, S. W. Han, S. M. Kim, J. J. Pak, "High detection performance of NDIR CO2 sensor using stair-tapered reflector," IEEE Sensors Journal, vol. 13, no. 8, pp. 3090-3097, Aug. 2013.
[11] A. Graf, H. Mielenz, M. Sauer, M. Arndt and G. Gerlach, "System design and analysis concept analysis concept of highly adaptable NDIR sensor for gas analysis," IEEE Solid-State Sensors Acuator and Microsystems Conference, pp. 2537-2540, Jun. 2007.
[12] J. Hodgkinson and R. P. Tatam, Optical gas sensing: a review, Cranfield: Department of Engineering Photonics, School of Engineering, Cranfield University, 2012.
[13] H. J. Pandya, S. Chandra, A. L. Vyas, "Integration of ZnO nanostructures with MEMS for ethanol sensor," Sensors and Actuators B, vol. 161, pp. 923-928, Jan. 2012.
[14] V. Guidi, G. C. Cardinali, L. Dori, G. Faglia, M. Ferroni, G. Martinelli, P. Nelli, G. Sberveglieri, "Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure," Sensors and Actuators B, vol. 49, pp. 88-92, Jun. 1998.
[15] H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, M.C. Cheng, "Carbon dioxide gas sensor using a graphene sheet," Sensors and Actuators B, vol. 157, pp. 310-313, Sep. 2011.
[16] Y. Zhou, G. Z. Xie, T. Xie, H. Yuan, H. Tai, Y. Jiang, and Z. Chen, "A sensitive film structure improvement of reduced graphene oxide based resistive gas sensors," APPLIED PHYSICS LETTERS, vol. 105, pp. 033502-1-033502-5, Jul. 2014.
[17] J. M. Chang and Z. S. Ho, A sol - gel method lanthanide monoxide perovskite thin films of sensing, Taichung: Department of Chemical Engineering, Tung Hai University, 2006.
[18] D. H. Kim, J. Y. Yoon, H. C. Park, K. H. Kim, "CO2-sensing characteristics of SnO2 thick film by coating lanthanum oxide," Sensors and Actuators B, vol. 62, pp. 61-66, Jan. 2000.
[19] C. Shao, Y. Chang and Y. Long, "High performance of nanostructured ZnO film gas sensor at room temperature," Sensors and Actuators B, vol. 204, pp. 666-672, Dec. 2014.
[20] P. Barritault , M. Brun, O. Lartigue, J. Willemin, J. L. O. Buffet, S. Pocas, S. Nicoletti, "Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source," Sensors and Actuators B, vol. 182, pp. 565-570, Jan. 2013.
[21] J. Mayrwöger, W. Reichl, P. Hauer, C. Krutzler, B. Jakoby, "CO2 monitoring using a simple Fabry–Perot-based germanium bolometer," Sensors and Actuators B, vol. 154, pp. 245-250, Jun. 2011.
[22] J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, R. P. Tatam, "Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2um in a compact and optically efficient sensor," Sensors and Actuators B, vol. 186, pp. 580-588, Sep. 2013.
[23] J. Mayrwoger, W. Reichl, C. Krutzler, B. Jakoby, "Measuring CO2 concentration with a Fabry–Perot based bolometer using a glass plate as simple infrared filter," Sensors and Actuators B, vol. 170, pp. 143-147, Jul. 2012.
[24] X. Ji, F. Wu, J. Wang, Z. Jia, Z. Bao, Y. Huang, "A MEMS IR thermal source for NDIR gas sensors," 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, pp. 620-622, Oct. 2006.
[25] K . P. Yoo, H. P. Hong, M .J. Lee, S. J. Min, C. W. Park, W. S. Choi and N. K. Min, "Fabrication, characterization and application of a microelectromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors," MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 22, pp. 1-10, Nov. 2011.
[26] J. H. Han, S. W. Han, S. M. Kim, J. J. Pak and S. Moon, "High Detection Performance of NDIR CO2 Sensor Using Stair-Tapered Reflector," IEEE SENSORS JOURNAL, vol. 13, pp. 3090-3097, Aug. 2013.
[27] A. Roncaglia, F. Mancarella, G. C. Cardinali, "CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5μm atmospheric window," Sensors and Actuators B, vol. 125, pp. 214-223, Jul 2007.
[28] M. Schreiter, R. Gabla, J. Lerchner, C. Hohlfeld , "Functionalized pyroelectric sensors for gas detection," Sensors and Actuators B, vol. 119, pp. 255-261, Nov 2006.
[29] B. Willing, M. Kohli, P. Muralt , O. Oehler, "Thin film pyroelectric array as a detector for an infrared gas spectrometer," Infrared Physics & Technology, vol. 39, pp. 443-449, Dec 1998.
[30] T. Lang, H.D. Wiemhofer, W. Gopel, "Carbonate based CO2 sensors with high performance," Sensors and Actuators B, vol. 34, pp. 383-387, Aug 1996.
[31] C. M. Travers, A. Jahanzeb, D. P. Butler and Z. C.Butler, "Fabrication of Semiconducting YBaCuO Surface-Micromachined Bolometer Arrays," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 6, pp. 271-276, Sep. 1997.
[32] E. S. Awad, N. A.Khalli, M. A.Rahman, M. Alduraibi, and N. Debbar, "Comparison of V2O5 Microbolometer Optical Performance Using NiCr and Ti Thin-Films," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 27, no. 5, pp. 462-465, Mar. 2015.
[33] M. Ahn, Y. H. Han, S. Moon, "A novel infrared absorbing structure for uncooled infrared detector," Current Applied Physics, vol. 7, pp. 617-621, Sep. 2007.
[34] Y. Zheng, X. Yu, M. Yuan, K. Yu, "Infrared Enhanced Absorption of TiNx Nano Films," 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 425-428, Feb. 2011.
[35] H. Fang, X. Liu, L. Liu, "A Uncooled a-Si Infrared Detector with Novel Thermal Isolation Method," 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 682-685, Jan. 2009.
[36] M. Moreno, A. Kosarev , A. Torres, R. Ambrosio, "Comparison of three un-cooled micro-bolometers configurations based on amorphous silicon–germanium thin films deposited by plasma," Journal of Non-Crystalline Solids , vol. 354, pp. 2598-2602, May. 2008.
[37] M. Moreno, A. Kosarev , A. Torres, R. Ambrosio, "Fabrication and performance comparison of planar and sandwich structures of micro-bolometers with Ge thermo-sensing layer," Thin Solid Films, vol. 515, pp. 7607-7610, Jul. 2007.
[38] S. Karanth, M. A. Sumesh, V. Shobha, H. G. Shanbhogue, C. L. Nagendra, "Infrared detectors based on thin film thermistor of ternary Mn–Ni–Co–O on micro-machined thermal isolation structure," Sensors and Actuators A, vol. 153, pp. 69-75, Jun. 2009.
[39] Nguyen Chi-Anh, Hyun-Joon Shin, KunTae Kim, Yong-Hee Han, Sung Moon, "Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer," Sensors and Actuators A, Vols. 123-124, pp. 87-91, Sep. 2005.
[40] H. Y. Lee, C. L. Wu, C. H. Kao, C. T. Lee, S. F. Tang, W. J. Lin, H. C. Chen, J. C. Lin, "Investigated performance of uncooled tantalum-doped VOxfloating-type microbolometers," Applied Surface Science, vol. 354, pp. 106-109, Nov. 2015.
[41] Y. H. Han, I. H. Choi, H. K. Kang, J. Y. Park, K. T. Kim, H. J. Shin, S. Moon, "Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers," Thin Solid Films, vol. 425, pp. 260-264, Feb. 2003.
[42] Y. H. Han, I. H. Choi, C. S. Son, K. T. Kim, N. C. Anh, H. J. Shin and S. Moon, "Fabrication of a Surface Micromachined Uncooled Microbolometer Based on the V2O5/V/V2O5 Sandwich Structure," Journal of the Korean Physical Society, vol. 45, pp. 1655-1658, Dec. 2004.
[43] C. F. Middleton and G. D. Boreman, "Technique for thermal isolation of antenna-coupled infrared microbolometers," Journal of Vacuum Science & Technology B, vol. 24, pp. 2356-2359, Sep. 2006.
[44] Y. S. Kim, T. H. Kim, G. T. Kim, B. T. Lim, S. K. Lim, H. D. Lee, and G. W. Lee, "Uncooled Microbolometer Arrays With High Responsivity Using Meshed Leg Structure," IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 25, no. 21, pp. 2108-2110, Nov. 2013.
[45] W. B. Song and J. J. Talghader, "Design and characterization of adaptive microbolometers," JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 16, pp. 1073-1079, Apr. 2006.
[46] R. N. Supino and J. J. Talghader, "Electrostatic control of microstructure thermal conductivity," Applied Physics Letters, vol. 78, pp. 1778-1780, Mar. 2001.
[47] D. Y. Qiao, W. Z. Yuan, X. Y. Li, "A two-beam method for extending the working range of electrostatic parallel-plate micro-actuators," Journal of Electrostatics, vol. 65, pp. 256-262, Apr. 2007.
[48] R. N. Guardia, A. Dehe, R. Aigner, and L. M. Castaner, "Current Drive Methods to Extend the Range of Travel of Electrostatic Microactuators Beyond the Voltage Pull-In Point," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 11, pp. 255-263, Jun. 2002.
[49] F. Hu, J.Yao, C. Qiu, H. Ren, "A MEMS micromirror driven by electrostatic force," Journal of Electrostatics, vol. 68, pp. 237-242, Jun. 2010.
[50] W. B. Song and J. J. Talghader, "Adjustable responsivity for thermal infrared detectors," APPLIED PHYSICS LETTERS, vol. 81, pp. 550-552, Jul. 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code