Responsive image
博碩士論文 etd-0616118-095010 詳細資訊
Title page for etd-0616118-095010
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於食品中含硫化合物與食米中砷化合物之分析應用
Determination of sulfur containing compounds in dry foods and arsenic compounds in rice by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-10
繳交日期
Date of Submission
2018-07-16
關鍵字
Keywords
砷、食品、硫、液相層析法、動態反應槽、感應耦合電漿質譜儀
Arsenic, Food, Sulfur, Dynamic reaction cell, HPLC-ICP-MS
統計
Statistics
本論文已被瀏覽 5659 次,被下載 23
The thesis/dissertation has been browsed 5659 times, has been downloaded 23 times.
中文摘要
摘要
第一部分研究為液相層析法結合感應耦合電漿質譜儀分析食品中sulfite (SO32-)、sulfate (SO42-) 與 thiosulfate (S2O32-) 三個硫物種。由於感應耦合電漿質譜儀分析硫時,氧氣及氮氣會造成嚴重的光譜干擾,因此藉由動態反應槽 (Dynamic reaction cell,DRC) 來減輕此影響。在層析方面,使用PRP-X100陰離子交換層析管柱有效的分離,沖堤液則為60 mM 硝酸銨及0.1% (v/v)甲醛與pH 7.0的混合溶液。霧化輸入裝置使用超音波霧化器,樣品分析前會經過加熱及冷凝步驟,將分析物表面的有機溶劑去除,有助於大幅提升分析物訊號並降低背景。本研究可於4.5分鐘內分離SO32-、SO42- 及S2O32-,所得偵測極限分別為3.4、3.1與3.7 ng mL-1,滯留時間、波峰高度與面積之相對標準偏差皆小於3.4% (n=5)。實驗以沖堤液硝酸銨作為萃取試劑,並使用超音波水浴振盪萃取,利用標準參考樣品NIST1573a Tomato Leaves驗證方法準確性後,應用於市售金針花及枸杞樣品中含硫化合物的分析應用。
第二部分研究為液相層析法結合感應耦合電漿質譜儀分析食米中TMAO (Triethylarsine oxide)、DMA (Dimethylarsinic acid)、MMA (Monomethylarsonic acid)、As(III) 和As(Ⅴ) 等砷物種。砷元素具有許多不同的物種形態,而形態的差異對於生物體作用及危害程度也大不相同,因此對於真實樣品進行物種分析,可更準確評估是否對於人體健康造成影響。實驗使用PRP-X100陰離子交換管柱分離,沖堤液為50 mM (NH4)2CO3、3% (v/v)甲醇與pH 9.0的混合溶液,並於DRC模式通入氧氣,將75As+ 反應成75As16O+,藉以避免40Ar35Cl+ 產生的光譜干擾,可於5分鐘內將TMAO、MMA、DMA及As(V)分離,偵測極限介於0.004-0.007 ng mL-1之間。研究使用0.2 M H2O2及0.1 M HNO3作為萃取試劑,將樣品中As(III) 氧化成As(V),不僅可使物種分離解析度較佳,更方便精準計算無機砷物種的含量。最後將本方法應用於SRM 1568a Rice Flour標準參考樣品、糙米及米精樣品,驗證方法準確性及可行性。
關鍵詞:感應耦合電漿質譜儀、動態反應槽、液相層析法、硫、砷、食品
Abstract
Abstract
First part of my research focused on high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the speciation of sulfur containing compound, namely sulfite (SO32-), sulfate (SO42-), and thiosulfate (S2O32-) in dry foods. However, there is a critical spectral interference in the analysis of sulfur by ICP-MS because of the oxygen and nitrogen gas in atmosphere nature. To resolve these problem, introducing dynamic reaction cell (DRC) coupled with ICP-MS followed by a chromatography was performed by using anion-exchange liquid chromatography with PRP-X100 column, using 60 mM ammonium nitrate (NH4NO3) and 0.1% (v/v) formaldehyde mixture at pH 7.0 as a mobile phase. The atomized input device was ultrasonic nebulizer. Before analyzing, the samples would employ desolvation and condensation process in order to remove the organic solvent which is adsorbed on the surface. These stringent procedures whereas significantly increase the analysis signal and decline the background. The overall analysis time this can be applied to within 4.5 minutes. The detection limits for SO32-, SO42-, and S2O32- were found to be 3.4, 3.1, and 3.7 ng mL-1, respectively. The relative standard deviations of the retention time, peak height, and peak area are all less than 3.4% (n=5). The samples were extracted with mobile phase by ultrasonic extraction method. The accuracy of this method was verified by the standard reference sample NIST1573a Tomato Leaves, and applied on the sulfur analysis of orange daylily and wolfberry.
Second part of my research focused on high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the speciation of arsenic, such as Triethylarsine oxide (TMAO), Dimethylarsinic acid (DMA), Monomethylarsonic acid (MMA), and also As(III)/As(V) which involved multiple rice samples. Arsenic occurs in a variety of chemical forms in natural environment, including organic and inorganic species. The different types of arsenic cause the distinct level of danger to humankind. Therefore, the qualitative analysis of individual species in real samples is an important issue to reveal the influences on human health. The chromatographed was performed by anion-exchange liquid chromatography with PRP-X100 column, using 50 mM ammonium carbonate ((NH4)2CO3) and 3% (v/v) methanol mixture at pH 9.0 as a mobile phase. The experimental setup introduced the DRC-ICP-MS as the element specific detector with oxygen as reaction gas transfer the mass of arsenic to 75As16O+ at m/z 91 in order to avoid the spectral interference on 40Ar35Cl+. The separation of arsenic species could be achieved less than 5 minutes and the detection limits were found to be 0.004-0.007 ng mL-1. Moreover, we used 0.2 M H2O2 and 0.1 M HNO3 mixture as extraction reagent to oxidize form As(III) to As(V), which is given better efficiency, and also proven that higher accuracy on calculating the concentration of individual inorganic arsenic species. Finally, this method was applied on SRM 1568a Rice Flour standard reference sample, brown rice, and rice cereal samples, in order to verify the accuracy and feasibility of this technique.
Keywords: HPLC-ICP-MS, Dynamic reaction cell, Sulfur, Arsenic, Food
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x

第一章 液相層析結合感應耦合電漿質譜儀於食品中含硫化合物之分析應用
壹、前言 1
一、研究背景 1
二、動態反應槽簡介 3
貳、實驗部分 5
一、儀器裝置 5
二、藥品及溶液的配製 9
參、實驗過程 10
一、液相層析分離條件探討 10
二、超音波霧化器系統最適化探討 10
三、DRC-ICP-MS系統最適化探討 10
四、再現性、校正曲線與偵測極限的預估 11
五、真實樣品分析 12
肆、結果與討論 16
一、液相層析分離條件探討 16
二、超音波霧化器系統最適化探討 22
三、DRC-ICP-MS系統最適化探討 26
四、再現性、校正曲線與偵測極限的預估 34
五、萃取條件最適化 34
六、真實樣品分析 37
伍、結論 48
陸、參考文獻 49

第二章 液相層析結合感應耦合電漿質譜儀於食米中砷化合物之分析應用
壹、前言 54
貳、實驗部分 57
一、儀器裝置 57
二、藥品及溶液的配製 59
參、實驗過程 63
一、液相層析分離條件探討 63
二、DRC-ICP-MS系統最適化探討 63
三、再現性、校正曲線與偵測極限的預估 64
四、真實樣品分析 64
肆、結果與討論 69
一、液相層析分離條件探討 69
二、DRC-ICP-MS系統最適化探討 77
三、再現性、校正曲線與偵測極限的預估 80
四、萃取條件最適化 85
五、真實樣品分析 90
伍、結論 100
陸、參考文獻 101

圖目錄
第一章 液相層析結合感應耦合電漿質譜儀於食品中含硫化合物之分析應用
圖1-1超音波霧化器裝置圖 7
圖1-2 HPLC-USN-DRC-ICP-MS之系統圖 8
圖1-3實驗流程圖 14
圖1-4樣品萃取流程圖 15
圖1-5沖堤液pH值對於層析的影響 17
圖1-6沖堤液中NH4NO3濃度對於層析的影響 18
圖1-7沖堤液流速對於層析的影響 20
圖1-8載流氣體流速對硫訊號與背景之影響 23
圖1-9去溶劑管溫度對硫訊號與背景之影響 24
圖1-10冷凝管溫度對硫訊號與背景之影響 25
圖1-11改變O2反應氣體流速對硫訊號與背景之影響 27
圖1-12改變Rpq值對硫訊號與背景之影響 28
圖1-13改變AFV值對硫訊號與背景之影響 30
圖1-14改變電漿輸出功率對硫訊號與背景之影響 31
圖1-15比較DRC系統對分析物之增益效果 33
圖1-16比較使用超音波振盪與微波輔助萃取不同溫度之萃取效率 38
圖1-17萃取時間對於萃取效率之影響 39
圖1-18 NIST1573a Tomato Leaves 標準參考樣品萃取液層析圖 41
圖1-19金針花樣品1萃取液層析圖 43
圖1-20金針花樣品2萃取液層析圖 44
圖1-21枸杞樣品萃取液層析圖 46

第二章 液相層析結合感應耦合電漿質譜儀於食米中砷化合物之分析應用
圖2-1 HPLC-DRC-ICP-MS系統圖 58
圖2-2砷物種之結構式 61
圖2-3砷物種於各pH值環境下之化學式及pKa値 62
圖2-4實驗流程圖 67
圖2-5樣品萃取流程圖 68
圖2-6改變沖堤液pH值對層析分離的影響 70
圖2-7改變沖堤液中 (NH4)2CO3濃度對層析分離的影響 72
圖2-8改變沖堤液中甲醇濃度對層析分離的影響 73
圖2-9改變沖堤液流速對層析分離的影響 75
圖2-10注入2 ng mL-1砷標準品及20 µg mL-1氯離子之層析圖 78
圖2-11改變O2反應氣體流速對砷訊號與背景之影響 79
圖2-12改變Rpq值對砷訊號與背景之影響 81
圖2-13改變AFV值對砷訊號與背景之影響 82
圖2-14不同模式下砷物種之層析圖 84
圖2-15萃取溫度對糙米樣品中砷的萃取效率 88
圖2-16萃取時間對糙米樣品中砷的萃取效率 89
圖2-17 SRM 1568a Rice Flour萃取液層析圖 92
圖2-18糙米樣品1萃取液層析圖 95
圖2-19糙米樣品2萃取液層析圖 96
圖2-20米精樣品萃取液層析圖 98

表目錄
第一章 液相層析結合感應耦合電漿質譜儀於食品中含硫化合物之分析應用
表1-1 以四極柱式ICP-MS測定硫元素之質量重疊干擾 11
表1-2微波消化升溫程式條件 12
表1-3沖堤液流速對32S16O波峰高度之S/B的影響 21
表1-4沖堤液流速對34S16O波峰高度之S/B的影響 21
表1-5硫物種分析在HPLC-USN-DRC-ICP-MS系統最適化條件 32
表1-6以HPLC-USN-DRC-ICP-MS測定硫物種之滯留時間及訊號再現性 35
表1-7以HPLC-USN-DRC-ICP-MS測定硫物種之校正曲線與偵測極限 35
表1-8硫物種偵測極限之比較 (ng mL-1) 36
表1-9以HPLC-USN-DRC-ICP-MS測定NIST1573a樣品中硫物種之含量 42
表1-10以HPLC-USN-DRC-ICP-MS測定金針花樣品中硫物種之含量 45
表1-11以HPLC-USN-DRC-ICP-MS測定枸杞樣品中硫物種之含量 47

第二章 液相層析結合感應耦合電漿質譜儀於食米中砷化合物之分析應用
表2-1砷物種化合物之半數致死量 56
表2-2微波消化升溫程式條件 65
表2-3沖堤液中甲醇濃度對75As波峰高度之S/B的影響 74
表2-4沖堤液中甲醇濃度對75As波峰積分面積之S/B的影響 74
表2-5沖堤液流速對75As波峰高度之S/B的影響 76
表2-6沖堤液流速對75As波峰積分面積之S/B的影響 76
表2-7砷物種分析在HPLC-DRC-ICP-MS系統最適化條件 83
表2-8以HPLC-DRC-ICP-MS測定砷物種之滯留時間及訊號再現性 86
表2-9以HPLC-DRC-ICP-MS測定砷物種之校正曲線與偵測極限 86
表2-10砷物種偵測極限之比較 (ng mL-1) 87
表2-11以HPLC-DRC-ICP-MS測定SRM 1568a中砷物種之含量 93
表2-12比較各研究中,SRM 1568a Rice Flour中砷物種之含量 94
表2-13以HPLC-DRC-ICP-MS測定糙米樣品中砷物種之含量 97
表2-14以HPLC-DRC-ICP-MS測定米精樣品中砷物種之含量 99
參考文獻 References
第一章
1. Lin, L.-Y.; Jiang, S.-J. Determination of sulfur compounds in water samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chin. Chem. Soc. 2009, 56, 967-973.
2. Budesinsky, B. W. Determination of sulfur dioxide in air. Microchem. J. 1977, 22, 55-59.
3. Divjak, B.; Goessler, W. Ion chromatographic separation of sulfur-containing inorganic anions with an ICP–MS as element-specific detector. J. Chromatogr. A 1999, 844, 161-169.
4. Richardson, D. B. Respiratory effects of chronic hydrogen sulfide exposure. Am. J. Ind. Med. 1995, 28, 99-108.
5. Li, Y.; Zhao, M. Simple methods for rapid determination of sulfite in food products. Food Control 2006, 17, 975-980.
6. Aberl, A.; Coelhan, M. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection. Food Addit. Contam 2013, 30, 226-233.
7. Zare-Dorabei, R.; Boroun, S.; Noroozifar, M. Flow injection analysis–flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor. Talanta 2018, 178, 722-727.
8. Ni, Z.; Tang, F.; Liu, Y.; Shen, D.; Mo, R. Rapid determination of low-level sulfite in dry vegetables and fruits by LC-ICP-MS. Food Sci. Technol. Res. 2015, 21, 1-6.
9. Robbins, K. S.; Shah, R.; MacMahon, S.; de Jager, L. S. Development of a liquid chromatography–tandem mass spectrometry method for the determination of sulfite in food. J. Agric. Food Chem. 2015, 63, 5126-5132.
10. Deister, U.; Neeb, R.; Helas, G.; Warneck, P. Temperature dependence of the equilibrium CH2(OH)2 + HSO3- = CH2(OH)SO3- + H2O in aqueous solution. J. Phys. Chem. 1986, 90, 3213-3217.
11. Taylor, S. L.; Higley, N. A.; Bush, R. K. Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv. Food Res. 1986, 30, 1-76.
12. Chen, P.-Y.; Huang, C.-C.; Chen, M.-C.; Hsu, J.-C.; Shih, Y. Determination of sulfite in hair waving products using oxygen-incorporated gold-modified screen-printed electrodes. Electroanalysis 2012, 24, 2267-2272.
13. Karimi-Maleh, H.; Ensafi, A. A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M. A.; Biparva, P. Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics 2012, 18, 687-694.
14. Zuo, Y.; Chen, H. Simultaneous determination of sulfite, sulfate, and hydroxymethanesulfonate in atmospheric waters by ion-pair HPLC technique. Talanta 2003, 59, 875-881.
15. Miura, Y.; Matsushita, Y.; Haddad, P. R. Stabilization of sulfide and sulfite and ion-pair chromatography of mixtures of sulfide, sulfite, sulfate and thiosulfate. J. Chromatogr. A 2005, 1085, 47-53.
16. Milićev, S.; Stergaršek, A. Qualitative and quantitative determination by Raman spectroscopy of different sulphur oxoacid anions, existing in equilibrium in oxidized leach liquors, produced by desulphurization of flue gases. Spectrochim. Acta A 1989, 45, 225-228.
17. Bandekarc, J.; Sethna, R.; Kirschner, M. Quantitative determination of sulfur oxide species in white liquor by FT-IR. Appl. Spectrosc. 1995, 49, 1577-1582.
18. Alamo, L. S. T.; Tangkuaram, T.; Satienperakul, S. Determination of sulfite by pervaporation-flow injection with amperometric detection using copper hexacyanoferrate-carbon nanotube modified carbon paste electrode. Talanta 2010, 81, 1793-1799.
19. Dinçkaya, E.; Sezgintürk, M. K.; Akyılmaz, E.; Ertaş, F. N. Sulfite determination using sulfite oxidase biosensor based glassy carbon electrode coated with thin mercury film. Food Chem. 2007, 101, 1540-1544.
20. Zeng, L.; Jiang, X.; Xu, J.; Zhang, Y.; Wang, H.; Zhang, Y. A colorimetric and ratiometric fluorescent probe for rapid and sensitive detection of sulfite in sugar. Anal. Methods 2016, 8, 1572-1576.
21. Theisen, S.; Hänsch, R.; Kothe, L.; Leist, U.; Galensa, R. A fast and sensitive HPLC method for sulfite analysis in food based on a plant sulfite oxidase biosensor. Biosens. Bioelectron. 2010, 26, 175-181.
22. Ruiz-Capillas, C.; Jiménez-Colmenero, F. Application of flow injection analysis for determining sulphites in food and beverages: A review. Food Chem. 2009, 112, 487-493.
23. Tzanavaras, P. D.; Thiakouli, E.; Themelis, D. G. Hybrid sequential injection–flow injection manifold for the spectrophotometric determination of total sulfite in wines using o-phthalaldehyde and gas-diffusion. Talanta 2009, 77, 1614-1619.
24. Navarrro, M. V.; Payán, M. R.; López, M. A. B.; Fernández-Torres, R.; Mochón, M. C. Rapid flow injection method for the determination of sulfite in wine using the permanganate–luminol luminescence system. Talanta 2010, 82, 2003-2006.
25. Altunay, N.; Gürkan, R. Preconcentration of sulfite from food and beverage matrices by ultrasonic assisted-cloud point extraction prior to its indirect determination by flame atomic absorption spectrometry. RSC Adv. 2016, 6, 20961-20970.
26. Motellier, S.; Descostes, M. Sulfur speciation and tetrathionate sulfitolysis monitoring by capillary electrophoresis. J. Chromatogr. A 2001, 907, 329-335.
27. de Carvalho, L. M.; Schwedt, G. Sulfur speciation by capillary zone electrophoresis: Determination of dithionite and its decomposition products sulfite, sulfate and thiosulfate in commercial bleaching agents. J. Chromatogr. A 2005, 1099, 185-190.
28. Hansen, L. D.; Richter, B. E.; Rollins, D. K.; Lamb, J. D.; Eatough, D. J. Determination of arsenic and sulfur species in environmental samples by ion chromatography. Anal. Chem. 1979, 51, 633-637.
29. Schaumloffel, D.; Giusti, P.; Preud’Homme, H.; Szpunar, J.; Łobinski, R. Precolumn isotope dilution analysis in nanoHPLC-ICPMS for absolute quantification of sulfur-containing peptides. Anal. Chem. 2007, 79, 2859-2868.
30. Johnson, D. C.; Dobberpuhl, D.; Roberts, R.; Vandeberg, P. Pulsed amperometric detection of carbohydrates, amines and sulfur species in ion chromatography —the current state of research. J. Chromatogr. A 1993, 640, 79-96.
31. Jiang, S.-J.; Houk, R. S. Inductively coupled plasma mass spectrometric detection for phosphorus and sulfur compounds separated by liquid chromatography. Spectrochim. Acta B 1988, 43, 405-411.
32. 翁御銘, 液相層析結合感應耦合電漿質譜儀於食品中六價鉻與含硫化合物之分析應用. 國立中山大學, 高雄市. 2017.
33. Moens, L. J.; Vanhaecke, F. F.; Bandura, D. R.; Baranov, V. I.; Tanner, S. D. Elimination of isobaric interferences in ICP-MS, using ion-molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study. J. Anal. At. Spectrom. 2001, 16, 991-994.
34. Tanner, S. D.; Baranov, V. I.; Bandura, D. R. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta B 2002, 57, 1361-1452.
35. Bandura, D. R.; Baranov, V. I.; Tanner, S. D. Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass. Spectrom. 2002, 13, 1176-1185.
36. Miura, Y.; Tsubamoto, M.; Koh, T. Ion chromatographic determination of sulfide, sulfite and thiosulfate in mixtures by means of their postcolumn reactions with iodine. Anal. Sci. 1994, 10, 595-600.
37. Miura, Y.; Fukasawa, K.; Koh, T. Determination of sulfur anions at the ppb level by ion chromatography utilizing their catalytic effects on the postcolumn reaction of iodine with azide. J. Chromatogr. A 1998, 804, 143-150.
38. Hissner, F.; Mattusch, J.; Heinig, K. Quantitative determination of sulfur-containing anions in complex matrices with capillary electrophoresis and conductivity detection. J. Chromatogr. A 1999, 848, 503-513.
39. O’Reilly, J. W.; Dicinoski, G. W.; Shaw, M. J.; Haddad, P. R. Chromatographic and electrophoretic separation of inorganic sulfur and sulfur–oxygen species. Anal. Chim. Acta 2001, 432, 165-192.
40. Yang, C.-H.; Jiang, S.-J. Determination of B, Si, P and S in steels by inductively coupled plasma quadrupole mass spectrometry with dynamic reaction cell. Spectrochim. Acta B 2004, 59, 1389-1394.
41. Bandura, D. R.; Baranov, V. I.; Tanner, S. D. Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Anal. Chem. 2002, 74, 1497-1502.
42. Candás-Zapico, S.; Kutscher, D. J.; Montes-Bayón, M. Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS. Talanta 2018, 180, 309-315.
43. D’Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F. Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review. Anal. Chim. Acta 2011, 698, 6-13.
44. http://www.watertec.com/epa/j050013.htm.
45. Hissner, F.; Mattusch, J.; Heinig, K. Quantitative determination of sulfur-containing anions in complex matrices with capillary electrophoresis and conductivity detection. J. Chromatogr. A 1999, 848, 503-513.
46. Robbins, K. S.; Shah, R.; MacMahon, S.; de Jager, L. S. Development of a liquid chromatography–tandem mass spectrometry method for the determination of sulfite in food. J. Agric. Food Chem. 2015, 63, 5126-5132.

第二章
1. Qi, Y.; Donahoe, R. J. The environmental fate of arsenic in surface soil contaminated by historical herbicide application. Sci. Total Environ. 2008, 405, 246-254.
2. Leermakers, M.; Baeyens, W.; De Gieter, M.; Smedts, B.; Meert, C.; De Bisschop, H. C.; Morabito, R.; Quevauviller, P. Toxic arsenic compounds in environmental samples: Speciation and validation. Trends Anal. Chem. 2006, 25, 1-10.
3. Vega, L.; Styblo, M.; Patterson, R.; Cullen, W.; Wang, C.; Germolec, D. Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol. Appl. Pharmacol. 2001, 172, 225-232.
4. Cao, X.; Hao, C.; Wang, G.; Yang, H.; Chen, D.; Wang, X. Sequential extraction combined with HPLC–ICP-MS for As speciation in dry seafood products. Food Chem. 2009, 113, 720-726.
5. Gao, Y.; Cao, X.; Yu, J.-J.; Frank Sen-Chun, L.; Wang, X.-R. Determination of arsenic and it's species in dry seafood by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Chin. J. Anal. Chem. 2009, 37, 1738-1742.
6. Hsieh, Y.-J.; Jiang, S.-J. Application of HPLC-ICP-MS and HPLC-ESI-MS procedures for arsenic speciation in seaweeds. J. Agric. Food Chem. 2012, 60, 2083-2089.
7. 科學人雜誌 Sci. Am. 2009, 92.
8. Batista, B. L.; Souza, J. M. O.; De Souza, S. S.; Barbosa, F. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J. Hazard. Mater. 2011, 191, 342-348.
9. Narukawa, T.; Chiba, K.; Sinaviwat, S.; Feldmann, J. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2017, 1479, 129-136.
10. Stiboller, M.; Raber, G.; Gjengedal, E. L. F.; Eggesbø, M.; Francesconi, K. A. Quantifying inorganic arsenic and other water-soluble arsenic species in human milk by HPLC/ICPMS. Anal. Chem. 2017, 89, 6265-6271.
11. Fang, Y.; Pan, Y.; Li, P.; Xue, M.; Pei, F.; Yang, W.; Ma, N.; Hu, Q. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry. Food Chem. 2016, 213, 609-615.
12. Huang, J. H.; Fecher, P.; Ilgen, G.; Hu, K. N.; Yang, J. Speciation of arsenite and arsenate in rice grain – Verification of nitric acid based extraction method and mass sample survey. Food Chem. 2012, 130, 453-459.
13. Narukawa, T.; Matsumoto, E.; Nishimura, T.; Hioki, A. Reversed phase column HPLC-ICP-MS conditions for arsenic speciation analysis of rice flour. Anal. Sci. 2015, 31, 521-527.
14. 中華民國102年08月20日部授食字第1021350146號令發布修正 食米重金屬限量標準.
15. 食品中污染物質及毒素衛生標準草案. 2017.
16. Bolea-Fernandez, E.; Balcaen, L.; Resano, M.; Vanhaecke, F. Overcoming spectral overlap via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial review. J. Anal. At. Spectrom. 2017, 32, 1660-1679.
17. Narukawa, T.; Chiba, K.; Kuroiwa, T.; Inagaki, K. Differences in sensitivity between As(iii) and As(v) measured by inductively coupled plasma spectrometry and the factors affecting the incoherent molecular formation (IMF) effect in the plasma. J. Anal. At. Spectrom. 2010, 25, 1682-1687.
18. Narukawa, T.; Kuroiwa, T.; Chiba, K. Mechanism of sensitivity difference between trivalent inorganic As species [As(III)] and pentavalent species [As(V)] with inductively coupled plasma spectrometry. Talanta 2007, 73, 157-165.
19. Šlejkovec, Z.; van Elteren, J. T.; Byrne, A. R.; de Goeij, J. J. M. Separation of radiolabelled arsenic compounds produced by neutron irradiation of organoarsenic compounds. Anal. Chim. Acta 1999, 380, 63-71.
20. 劉殷孝, 液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及對含鉻化合物之分析應用. 國立中山大學, 高雄市. 2014.
21. 鄭雅瑜, 液相層析結合感應耦合電漿質譜儀於環境水樣與食米樣品中砷物種分析及酒品中含鉻化合物之分析應用. 國立中山大學, 高雄市. 2015.
22. Jackson, B. P., Fast ion chromatography-ICP-QQQ for arsenic speciation. J. Anal. At. Spectrom. 2015, 30, 1405-1407.
23. 黃雅琪, 液相層析結合感應耦合電漿質譜儀於酒品中砷與硒物種分析及食物中旳碲化合物之分析應用. 國立中山大學, 高雄市. 2017.
24. Raber, G.; Raml, R.; Goessler, W.; Francesconi, K. A. Quantitative speciation of arsenic compounds when using organic solvent gradients in HPLC-ICPMS. J. Anal. At. Spectrom. 2010, 25, 570-576.
25. Amayo, K. O.; Petursdottir, A.; Newcombe, C.; Gunnlaugsdottir, H.; Raab, A.; Krupp, E. M.; Feldmann, J. Identification and quantification of arsenolipids using reversed-phase HPLC coupled simultaneously to high-resolution ICPMS and high-resolution electrospray MS without species-specific standards. Anal. Chem. 2011, 83, 3589-3595.
26. Saxena, S. K.; Karipalli, A. R.; Krishnan, A. A.; Rangasamy, R.; Malekadi, P.; Singh, D. P.; Vasu, V.; Singh, V. K. Determination and uncertainty analysis of inorganic arsenic in husked rice by solid phase extraction and atomic absorption spectrometry with hydride generation. J. AOAC Int. 2017, 100, 598-602.
27. Maher, W. A.; Eggins, S.; Krikowa, F.; Jagtap, R.; Foster, S. Measurement of As species in rice by HPLC-ICPMS after extraction with sub-critical water and hydrogen peroxide. J. Anal. At. Spectrom. 2017, 32, 1129-1134.
28. Raber, G.; Stock, N.; Hanel, P.; Murko, M.; Navratilova, J.; Francesconi, K. A. An improved HPLC–ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chem. 2012, 134, 524-532.
29. Lee, S. G.; Kim, D. H.; Lee, Y. S.; Cho, S.-Y.; Chung, M.-S.; Cho, M.; Kang, Y.; Kim, H.; Kim, D.; Lee, K.-W. Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea. J. Food Compos. Anal. 2018, 69, 25-32.
30. Araujo-Barbosa, U.; Peña-Vazquez, E.; Barciela-Alonso, M. C.; Costa Ferreira, S. L.; Pinto dos Santos, A. M.; Bermejo-Barrera, P. Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS. Talanta 2017, 170, 523-529.
31. Batista, B. L.; Nacano, L. R.; De Souza, S. S.; Barbosa, F. Rapid sample preparation procedure for As speciation in food samples by LC-ICP-MS. Food Addit. Contam. Part A 2012, 29, 780-788.
32. D'Amato, M.; Aureli, F.; Ciardullo, S.; Raggi, A.; Cubadda, F. Arsenic speciation in wheat and wheat products using ultrasound- and microwave-assisted extraction and anion exchange chromatography-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2011, 26, 207-213.
33. 嚴可軒, 液相層析結合化學蒸氣生成感應耦合電漿質譜儀於海藻及食用米中無機砷之分析應用. 國立中山大學, 高雄市. 2016.
34. Li, X.; Xie, K.; Yue, B.; Gong, Y.; Shao, Y.; Shang, X.; Wu, Y. Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population. Sci. China Chem. 2015, 58, 1898-1905.
35. D'Amato, M.; Forte, G.; Caroli, S. Identification and quantification of major species of arsenic in rice. J. AOAC Int. 2004, 87, 238-243.
36. Narukawa, T.; Inagaki, K.; Kuroiwa, T.; Chiba, K. The extraction and speciation of arsenic in rice flour by HPLC–ICP-MS. Talanta 2008, 77, 427-432.
37. Zhu, Y. G.; Sun, G. X.; Lei, M.; Teng, M.; Liu, Y. X.; Chen, N. C.; Wang, L. H.; Carey, A. M.; Deacon, C.; Raab, A.; Meharg, A. A.; Williams, P. N. High percentage inorganic arsenic content of mining impacted and nonimpacted chinese rice. Environ. Sci. Technol. 2008, 42, 5008-5013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code