Responsive image
博碩士論文 etd-0616118-111109 詳細資訊
Title page for etd-0616118-111109
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於淤泥樣品中汞、鉻與砷物種之分析應用
Determination of mercury, chromium and arsenic species in sludge samples by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-10
繳交日期
Date of Submission
2018-07-16
關鍵字
Keywords
鉻、汞、液相層析、感應耦合電漿質譜儀、淤泥、物種分析、砷
Arsenic, Chromium, Speciation analysis, Mercury, Sludge, Liquid chromatography, Inductively coupled plasma mass spectrometry
統計
Statistics
本論文已被瀏覽 5682 次,被下載 13
The thesis/dissertation has been browsed 5682 times, has been downloaded 13 times.
中文摘要
第一部分研究為利用離子對逆相層析法結合感應耦合電漿質譜儀分析淤泥樣品中汞物種之含量。研究中搭配C8逆相層析管柱分離無機汞、甲基汞及乙基汞等三種汞物種,使用2-硫基乙醇(2-mercaptoethanol)和甲醇作為動相,藉由汞與硫氫基之間的強親和力進行分離。實驗所得之最適化條件以等位沖堤方式可於6.5分鐘內完全分離三個汞物種,各物種波峰高度和面積之相對標準偏差值小於2%,無機汞、甲基汞及乙基汞的偵測極限分別為0.013、0.010及0.015 ng mL-1。在淤泥樣品的萃取過程中,於動相(0.3% (v/v) 2-mercaptoethanol和3.5% (v/v) MeOH)中添加1.0% (v/v) HCl作為萃取試劑,以微波輔助萃取的方式於60℃下萃取8分鐘,可獲得93%.以上的萃取效率,且各個汞物種的添加回收率介於95-102%.之間,證實本研究方法應用於淤泥分析之可行性。研究中檢測四種環境淤泥的汞物種,分析結果顯示淤泥中主要為無機汞,而高汙染水域則有甲基汞存在,推測為下游泥土沉積後有較多的微生物將無機汞轉化成甲基汞。
第二部分研究為利用離子交換層析法結合感應耦合電漿質譜儀分析淤泥樣品中鉻與砷物種之含量。研究中搭配陰離子交換管柱,使用硝酸銨(NH4NO3)作為動相,以梯度沖堤方式於十分鐘內同時分離Cr(III)、Cr(VI)、As(III)、As(V)、AsB、DMA及MMA等共七個鉻與砷物種。在偵測鉻與砷時可能遭遇來自40Ar12C+和40Ar35Cl+等光譜干擾,使用動態反應槽以O2作為反應氣體,藉由改變分析物或干擾物的質荷比以減輕干擾,可以降低背景訊號同時改善偵測極限。在層析分離和動態反應槽的最適化條件下,各物種波峰高度和面積之相對標準偏差值小於等於2.7%,可獲得偵測極限分別為鉻物種介於0.059-0.072 ng mL-1,砷物種介於0.009-0.015 ng mL-1。在淤泥樣品的萃取過程中,於動相B(40 mM NH4NO3)中添加1.0% (v/v) HF作為萃取試劑以破壞泥土基質,搭配微波輔助萃取於90℃下萃取40分鐘,鉻與砷的萃取效率可分別達到85%和100%,且各個物種的添加回收率分別介於92-106%以及93-108%之間,證實本研究方法成功應用於測定不同水域淤泥中的鉻與砷物種。研究中檢測四種環境淤泥的汞物種,分析結果顯示淤泥中淤泥中的鉻與砷物種。分析結果顯示淤泥中的鉻與砷物種主要為無機物種,而汙染嚴重的水域皆存在毒性較高的Cr(VI)和As(III),歸納出水域的汙染程度及採樣位置皆會影響元素物種型態。
Abstract
The first part of research focused on ion-pair reversed-phase chromatography with inductively coupled plasma mass spectrometry for determination of mercury species in sludge samples. The separation of Hg(II), methyl-Hg and ethyl-Hg was performed on a reversed-phase C8 column with 2-mercaptoethanol and MeOH as mobile phase, since mercury had a strong affinity to thiol group of 2-mercaptoethanol. Under the optimized conditions, the separation of three mercury species was completed within 6.5 minutes by using isocratic elution program. The relative standard deviation of the peak heights and areas were less than 1.9% for the study species, and the detection limits of Hg(II), methyl-Hg and ethyl-Hg were found to be 0.013, 0.010 and 0.015 ng mL-1, respectively. In the extraction process, the mercury compounds were efficiently extracted from sludge samples by microwave-assisted extraction method, which using the mobile phase (0.3% (v/v) 2-mercaptoethanol and 3.5% (v/v) MeOH) containing 1.0% (v/v) HCl as the extracted reagent. We obtained an extraction efficiency of greater than 93% under heating at 60℃ for 8 minutes, and the spike recoveries of each individual mercury species were in the range of 95-102% to demonstrate the feasibility of the proposed method for sludge analysis. The research was applied to investigate mercury species in four environmental sludge samples, and results revealed that accumulation in sludge was predominantly Hg(II). While methyl-Hg would present in the high pollution water area, it might result from the microorganisms in downstream sludge which could transform Hg(II) into methyl-Hg.
The second part of research focused on ion-exchange chromatography with inductively coupled plasma mass spectrometry for determination of chromium and arsenic species in sludge samples. The simultaneous separation of Cr(III), Cr(VI), As(III), As(V), AsB, DMA and MMA was performed on an anion-exchange column by using gradient elution program with NH4NO3 as mobile phase, and the separation was using gradient elution program with NH4NO3 as mobile phase, and the separation was completed within 10 minutes. Since the detection of chromium and arsenic may suffer from the spectral interferences 40Ar12C+ and 40Ar35Cl+, a dynamic reaction cell (DRC) with O2 as reaction gas was employed to change the mass-to-charge ratio of analytes orinterfering substances to reduce these interferences, which could decrease the background signal and improve the detection limits. Under the optimized conditions of separation and DRC system, the relative standard deviation of the peak heights and areas were less than 2.7% for the study species, and the detection limits of species were in the range of 0.059-0.072 ng mL-1 for chromium and 0.009-0.015 ng mL-1 for arsenic. In the extraction process, chromium and arsenic species were extracted from sludge samples by microwave-assisted extraction method, which using the mobile phase B (40 mM NH4NO3) containing 1.0% (v/v) HF as the extracted reagent to destroy the sludge matrix. The extraction efficiency of chromium and arsenic were achieved 85% and 100% under heating at 90℃ for 40 minutes. The spike recoveries of each individual species were in the range of 92-106% for chromium and 93-108% for arsenic to demonstrate that the proposed method could be applied to determine chromium and arsenic species in sludge at different water area. The analytical results revealed that accumulation in sludge were predominantly inorganic chromium and arsenic, while the more toxic Cr(VI) and As(III) both existed in the high pollution water area. To sum up, different elemental species were presented which depend on the degree of water pollution and sampling location.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中汞物種之分析應用
壹、前言 1
貳、實驗部分 3
一、儀器裝置 3
二、藥品與溶液配製 5
三、真實樣品 6
參、實驗流程 7
一、液相層析分離條件最適化 7
二、ICP-MS系統條件最適化 7
三、再現性 7
四、校正曲線和偵測極限 8
五、樣品製備與分析 8
肆、結果與討論 13
一、液相層析分離條件最適化 13
二、ICP-MS系統條件最適化 22
三、方法分析性能 24
四、微波萃取條件最適化 29
五、真實樣品分析 36
伍、結論 46
陸、參考文獻 47
第二章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中鉻與砷物種之分析應用
壹、前言 52
貳、動態反應槽簡介 55
參、實驗部分 56
一、儀器裝置 56
二、藥品與溶液配製 56
三、真實樣品 59
肆、實驗流程 60
一、液相層析分離條件最適化 60
二、DRC-ICP-MS系統條件最適化 60
三、再現性 64
四、校正曲線和偵測極限 64
五、樣品製備與分析 65
伍、結果與討論 69
一、液相層析分離條件最適化 69
二、DRC-ICP-MS系統條件最適化 77
三、方法分析性能 86
四、微波萃取條件最適化 93
五、真實樣品分析 100
陸、結論 116
柒、參考文獻 117

圖目錄
第一章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中汞物種之分析應用
圖1-1. HPLC-ICP-MS系統圖 4
圖1-2 實驗流程圖 9
圖1-3 樣品萃取流程圖 12
圖1-4 動相中2-mercaptoethanol濃度對層析分離的影響 15
圖1-5 動相中2-mercaptoethanol濃度對汞物種滯留時間的影響 16
圖1-6 沖堤流速對層析分離的影響 17
圖1-7 沖堤流速對(a)汞物種滯留時間及(b)汞物種訊號高度之S/B的影響 18
圖1-8 動相中MeOH濃度對層析分離的影響 20
圖1-9 動相中MeOH濃度對汞物種滯留時間的影響 21
圖1-10 霧化氣體流速對汞元素分析訊號的影響 22
圖1-11 電漿輸出功率對汞元素分析訊號的影響 23
圖1-12 .HPLC-ICP-MS系統所得之汞物種層析圖 25
圖1-13 萃取液中2-mercaptoethanol濃度對淤泥樣品中汞的萃取效率 30
圖1-14 萃取液中添加不同酸試劑對淤泥樣品中汞的萃取效率 31
圖1-15 萃取液中HCl濃度對淤泥樣品中汞的萃取效率 32
圖1-16 不同濃度之HCl萃取5 ng mL-1汞物種標準品所得層析圖 33
圖1-17 萃取溫度對淤泥樣品中汞的萃取效率 34
圖1-18 萃取時間對淤泥樣品中汞的萃取效率 35
圖1-19 淤泥標準參考物質NIST SRM 2781萃取所得之汞物種層析圖 37
圖1-20..二仁溪淤泥萃取所得之汞物種層析圖 40
圖1-21..後勁溪淤泥萃取所得之汞物種層析圖 41
圖1-22..愛河淤泥萃取所得之汞物種層析圖 42
圖1-23..美術館人工湖淤泥萃取所得之汞物種層析圖 43
第二章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中鉻與砷物種之分析應用
圖2-1 .HPLC-DRC-ICP-MS系統圖 57
圖2-2 砷物種之結構式 61
圖2-3 鉻與砷物種之pKa值和不同pH值環境下之化學式 62
圖2-4 實驗流程圖 66
圖2-5 樣品萃取流程圖 68
圖2-6 動相組成試劑對層析分離的影響 71
圖2-7 動相中NH4NO3濃度對層析分離的影響 72
圖2-8 動相pH值對層析分離的影響 74
圖2-9 動相切換時間對層析分離的影響 75
圖2-10 沖堤流速對層析分離的影響 76
圖2-11 改變O2氣體流速對分析物訊號與背景訊號的影響 80
圖2-12 改變O2氣體流速對預估偵測極限(EDL)的影響 81
圖2-13 改變Rpq值對分析物訊號與背景訊號的影響 82
圖2-14 改變Rpq值對預估偵測極限(EDL)的影響 83
圖2-15 改變軸場電壓對分析物訊號與背景訊號的影響 84
圖2-16 改變軸場電壓對預估偵測極限(EDL)的影響 85
圖2-17 在不同模式下之鉻與砷物種層析圖 88
圖2-18 萃取液中添加不同酸試劑對淤泥樣品中鉻與砷的萃取效率 94
圖2-19 不同濃度酸試劑對淤泥樣品中鉻與砷的萃取效率 95
圖2-20 不同濃度酸試劑萃取淤泥樣品所得之鉻與砷物種層析圖 96
圖2-21 萃取溫度對淤泥樣品中鉻與砷的萃取效率 98
圖2-22 萃取時間對淤泥樣品中鉻與砷的萃取效率 99
圖2-23 淤泥標準參考物質NIST SRM 2781萃取所得之鉻與砷物種層析圖 101
圖2-24 二仁溪水樣所得之鉻與砷物種層析圖 103
圖2-25 後勁溪水樣所得之鉻與砷物種層析圖 104
圖2-26 二仁溪淤泥萃取所得之鉻與砷物種層析圖 108
圖2-27 後勁溪淤泥萃取所得之鉻與砷物種層析圖 110
圖2-28 愛河淤泥萃取所得之鉻與砷物種層析圖 112
圖2-29 美術館人工湖淤泥萃取所得之鉻與砷物種層析圖 114
表目錄
第一章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中汞物種之分析應用
表1-1 微波消化參數設定 11
表1-2 微波萃取參數設定 11
表1-3 .HPLC-ICP-MS系統操作條件 26
表1-4 以HPLC-ICP-MS測定1 ng mL-1汞物種之滯留時間和訊號再現性 26
表1-5 以HPLC-ICP-MS測定汞物種之校正曲線和偵測極限 27
表1-6 汞物種偵測極限和分離時間之比較 28
表1-7 .HCl濃度對汞物種波峰面積的影響 33
表1-8 以HPLC-ICP-MS測定淤泥標準參考物質NIST SRM 2781中汞物種之含量及回收率 38
表1-9 環境水樣中汞含量之定量結果 39
表1-10 以HPLC-ICP-MS測定淤泥樣品中汞物種之含量及回收率 44
第二章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中鉻與砷物種之分析應用
表2-1 鉻與砷物種之半數致死量 53
表2-2 以ICP-MS分析鉻與砷時常見之光譜干擾 63
表2-3 微波消化參數設定 67
表2-4 微波萃取參數設定 67
表2-5 液相層析系統操作條件 78
表2-6 .DRC-ICP-MS系統操作條件 87
表2-7 以HPLC-DRC-ICP-MS測定1 ng mL-1鉻與砷物種之滯留時間和訊號再現性 90
表2-8 以HPLC-DRC-ICP-MS測定鉻與砷物種之校正曲線和偵測極限 91
表2-9 鉻與砷物種偵測極限之比較(ng mL-1) 92
表2-10 酸試劑濃度對鉻與砷物種波峰面積的影響 97
表2-11 以HPLC-DRC-ICP-MS測定淤泥標準參考物質NIST SRM 2781中鉻與砷物種之含量及回收率 102
表2-12 以HPLC-DRC-ICP-MS測定環境水樣中鉻與砷物種之含量及回收率 105
表2-13 以HPLC-DRC-ICP-MS測定二仁溪淤泥中鉻與砷物種之含量及回收率 109
表2-14 以HPLC-DRC-ICP-MS測定後勁溪淤泥中鉻與砷物種之含量及回收率 111
表2-15 以HPLC-DRC-ICP-MS測定愛河淤泥中鉻與砷物種之含量及回收率 113
表2-16 以HPLC-DRC-ICP-MS測定美術館人工湖淤泥中鉻與砷物種之含量及回收率 115
參考文獻 References
第一章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中汞物種之分析應用
1. Clarkson, T. W.; Magos, L., The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609-662.
2. Syversen, T.; Kaur, P., The toxicology of mercury and its compounds. J. Trace Elem. Med Biol. 2012, 26, 215-226.
3. Wang, Q.; Kim, D.; Dionysiou, D. D.; Sorial, G. A.; Timberlake, D., Sources and remediation for mercury contamination in aquatic systems–a literature review. Environ. Pollut. 2004, 131, 323-336.
4. Winter, J. G.; Dillon, P. J., Effects of golf course construction and operation on water chemistry of headwater streams on the Precambrian Shield. Environ. Pollut. 2005, 133, 243-253.
5. Fitzgerald, W. F.; Engstrom, D. R.; Mason, R. P.; Nater, E. A., The case for atmospheric mercury contamination in remote areas. Environ. Sci. Technol. 1998, 32, 1-7.
6. Marcinkowska, M.; Baralkiewicz, D., Multielemental speciation analysis by advanced hyphenated technique–HPLC/ICP-MS: A review. Talanta 2016, 161, 177-204.
7. Schroeder, W. H.; Munthe, J., Atmospheric mercury–An overview. Atmos. Environ. 1998, 32, 809-822.
8. Morel, F. M. M.; Kraepiel, A. M. L.; Amyot, M., The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543-566.
9. Allard, B.; Arsenie, I., Abiotic reduction of mercury by humic substances in aquatic system–an important process for the mercury cycle. Water, Air, Soil Pollut. 1991, 56, 457-464.
10. Döker, S.; Bosgelmez, I. I., Rapid extraction and reverse phase-liquid chromatographic separation of mercury(II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem. 2015, 184, 147-153.
11. Dieguez-Acuña, F. J.; Polk, W. W.; Ellis, M. E.; Simmonds, P. L.; Kushleika, J. V.; Woods, J. S., Nuclear factor kappaB activity determines the sensitivity of kidney epithelial cells to apoptosis: implications for mercury-induced renal failure. Toxicol. Sci. 2004, 82, 114-123.
12. Zahir, F.; Rizwi, S. J.; Haq, S. K.; Khan, R. H., Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351-360.
13. Harada, M., Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1-24.
14. Bourioug, M.; Gimbert, F.; Alaoui-Sehmer, L.; Benbrahim, M.; Aleya, L.; Alaoui-Sosse, B., Sewage sludge application in a plantation: effects on trace metal transfer in soil-plant-snail continuum. Sci. Total Environ. 2015, 502, 309-314.
15. Issaro, N.; Abi-Ghanem, C.; Bermond, A., Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Anal. Chim. Acta 2009, 631, 1-12.
16. Gao, Y.; De Galan, S.; De Brauwere, A.; Baeyens, W.; Leermakers, M., Mercury speciation in hair by headspace injection-gas chromatography-atomic fluorescence spectrometry(methylmercury) and combustion-atomic absorption spectrometry (total Hg). Talanta 2010, 82, 1919-1923.
17. Pelcová, P.; Docekalová, H.; Kleckerová, A., Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography-atomic fluorescence spectrometry after microwave extraction. Anal. Chim. Acta 2015, 866, 21-26.
18. Zhao, Y.; Zheng, J.; Fang, L.; Lin, Q.; Wu, Y.; Xue, Z.; Fu, F., Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 2012, 89, 280-285.
19. Souza, S. S.; Rodrigues, J. L.; Oliveira Souza, V. C.; Barbosa Jr, F., A fast sample preparation procedure for mercury speciation in hair samples by high-performance liquid chromatography coupled to ICP-MS. J. Anal. At. Spectrom. 2010, 25, 79-83.
20. Wang, M.; Feng, W.; Lu, W.; Li, B.; Wang, B.; Zhu, M.; Wang, Y.; Yuan, H.; Zhao, Y.; Chai, Z., Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICPMS with a hexapole collision cell. Anal. Chem. 2007, 79, 9128-9134.
21. Parker, J. L.; Bloom, N. S., Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 2005, 337, 253-263.
22. Chang, L. F.; Jiang, S. J.; Sahayam, A. C., Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2007, 1176, 143-148.
23. 林良諺(2008):液相層析結合感應耦合電漿質譜儀於穀物樣品中汞物種及水樣中硫物種分析之應用。國立中山大學化學系碩士論文。
24. Yao, C. H.; Jiang, S. J.; Sahayam, A. C.; Huang, Y. L., Speciation of mercury in fish oils using liquid chromatography inductively coupled plasma mass spectrometry. Microchem. J. 2017, 133, 556-560.
25. Camera, A. S.; Maranhão, T. A.; Oliveira, F. J. S.; Silva, J. S. A.; Frescura, V. L. A., Total mercury determination in petroleum green coke and oily sludge samples by cold vapor atomic fluorescence spectrometry. J. Braz. Chem. Soc. 2015, 26, 2116-2124.
26. Bouchet, S.; Bjorn, E., Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2014, 1339, 50-58.
27. Batista, B. L.; Rodrigues, J. L.; De Souza, S. S.; Oliveira Souza, V. C.; Barbosa, F., Jr., Mercury speciation in seafood samples by LC-ICP-MS with a rapid ultrasound-assisted extraction procedure: Application to the determination of mercury in Brazilian seafood samples. Food Chem. 2011, 126, 2000-2004.
28. Zhu, S.; Chen, B.; He, M.; Huang, T.; Hu, B., Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 2017, 171, 213-219.
29. Aizpún, B.; Fernández, M. L.; Blanco, E.; Sanz-Medel, A., Speciation of inorganic mercury(II) and methylmercury by vesicle-mediated high-performance liquid chromatography coupled to cold vapour atomic absorption spectrometry. J. Anal. At. Spectrom. 1994, 9, 1279-1284.
30. Pirkle, W. H.; Welch, C. J., A convenient void volume marker for several chiral HPLC columns. J. Liq. Chromatogr. Relat. Technol. 1991, 14, 1-8.
31. Liu, R.; Wang, C.; Xu, Y.; Hu, J.; Deng, D.; Lv, Y., Label-free DNA assay by metal stable isotope detection. Anal. Chem. 2017, 89, 13269-13274.
32. Chen, X.; Han, C.; Cheng, H.; Wang, Y.; Liu, J.; Xu, Z.; Hu, L., Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J. Chromatogr. A 2013, 1314, 86-93.
33. Chen, B.; Wu, Y.; Guo, X.; He, M.; Hu, B., Speciation of mercury in various samples from the micro-ecosystem of East Lake by hollow fiber-liquid–liquid–liquid microextraction-HPLC-ICP-MS. J. Anal. At. Spectrom. 2015, 30, 875-881.
34. Fang, Y.; Pan, Y.; Li, P.; Xue, M.; Pei, F.; Yang, W.; Ma, N.; Hu, Q., Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase
chromatography with inductively coupled plasma mass spectrometry. Food Chem. 2016, 213, 609-615.
35. Wang, H.; Chen, B.; Zhu, S.; Yu, X.; He, M.; Hu, B., Chip-based magnetic solid-phase microextraction online coupled with microHPLC-ICPMS for the determination of mercury species in cells. Anal. Chem. 2016, 88, 796-802.
36. Lin, L. Y.; Chang, L. F.; Jiang, S. J., Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation ICP-MS. J. Agric. Food Chem. 2008, 56, 6868-6872.
37. Mališová, K.; Koplík, R.; Mestek, O., Speciation of mercury in terrestrial plants using vapor generation and liquid chromatography-inductively coupled plasma mass spectrometry. Anal. Lett. 2015, 48, 2446-2462.
38. Zhao, Y.; Zheng, J.; Fang, L.; Lin, Q.; Wu, Y.; Xue, Z.; Fu, F., Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 2012, 89, 280-285.
39. Hammerschmidt, C. R.; Fitzgerald, W. F., Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 2004, 38, 1487-1495.
40. Rahman, G. M.; Kingston, H. M., Application of speciated isotope dilution mass spectrometry to evaluate extraction methods for determining mercury speciation in soils and sediments. Anal. Chem. 2004, 76, 3548-3555.
41. Wang, M.; Feng, W.; Shi, J.; Zhang, F.; Wang, B.; Zhu, M.; Li, B.; Zhao, Y.; Chai, Z., Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta 2007, 71, 2034-2039.
42. Sanchez-Prado, L.; Garcia-Jares, C.; Llompart, M., Microwave-assisted extraction: Application to the determination of emerging pollutants in solid samples. J. Chromatogr. A 2010, 1217, 2390-2414.
43. Park, M.; Yoon, H.; Yoon, C.; Yu, J. Y., Estimation of mercury speciation in soil standard reference materials with different extraction methods by ion chromatography coupled with ICP-MS. Environ. Geochem. Health 2011, 33, 49-56.
第二章 液相層析結合感應耦合電漿質譜儀於淤泥樣品中鉻與砷物種之分析應用
1. Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C., Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Technol. 2001, 76, 63-65.
2. Marcinkowska, M.; Baralkiewicz, D., Multielemental speciation analysis by advanced hyphenated technique–HPLC/ICP-MS: A review. Talanta 2016, 161, 177-204.
3. Tuzen, M.; Soylak, M., Chromium speciation in environmental samples by solid phase extraction on Chromosorb 108. J. Hazard. Mater. 2006, 129, 266-273.
4. Marqués, M. J.; Salvador, A.; Morales-Rubio, A.; de la Guardia, M., Chromium speciation in liquid matrices: a survey of the literature Fresenius’ J. Anal. Chem. 2000, 367, 601-613.
5. Melaku, S.; Cornelis, R.; Vanhaecke, F.; Dams, R.; Moens, L., Method development for the speciation of chromium in river and industrial wastewater using GFAAS. Microchim. Acta 2005, 150, 225-231.
6. Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal. Chim. Acta 2013, 770, 140-146.
7. Shanker, A. K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S., Chromium toxicity in plants. Environ. Int. 2005, 31, 739-753.
8. Choi, H.; Park, S. K.; Kim, D. S.; Kim, M., Determination of 6 arsenic species present in seaweed by solvent extraction, clean-up, and LC-ICP/MS. Food Sci. Biotechnol. 2011, 20, 39-44.
9. Guo, H.; Stüben, D.; Berner, Z.; Yu, Q., Characteristics of arsenic adsorption from aqueous solution: Effect of arsenic species and natural adsorbents. Appl. Geochem. 2009, 24, 657-663.
10. Polak, M.; Opoka, R.; Cartwright, I. L., Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis. Environ. Pollut. 2002, 118, 19-28.
11. Sadee, B.; Foulkes, M. E.; Hill, S. J., Coupled techniques for arsenic speciation in food and drinking water: a review. J. Anal. At. Spectrom. 2015, 30, 102-118.
12. Antolín, M. C.; Muro, I.; Sánchez-Díaz, M., Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ. Exp. Bot. 2010, 68, 75-82.
13. Antolín, M. C.; Pascual, I.; García, C.; Polo, A.; Sánchez-Díaz, M., Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. Field. Crop. Res. 2005, 94, 224-237.
14. Chen, Y.; Chen, J.; Xi, Z.; Yang, G.; Wu, Z.; Li, J.; Fu, F., Simultaneous analysis of..Cr(III),.Cr(VI),.and..chromium..picolinate..in..foods..using..capillary..electrophoresis-inductively coupled plasma mass spectrometry. Electrophoresis 2015, 36, 1208-1215.
15. Sele, V.; Amlund, H.; Berntssen, M. H.; Berntsen, J. A.; Skov, K.; Sloth, J. J., Detection of arsenic-containing hydrocarbons in a range of commercial fish oils by GC-ICPMS analysis. Anal. Bioanal. Chem. 2013, 405, 5179-5190.
16. Anawar, H. M., Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 2012, 88, 30-42.
17. Gómez-Ariza, J. L.; Sánchez-Rodas, D.; Giráldez, I.; Morales, E., A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta 2000, 51, 257-268.
18. Roig-Navarro, A. F.; Martinez-Bravo, Y.; López, F. J.; Hernández, F., Simultaneous determination of arsenic species and chromium(VI) by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. J. Chromatogr. A 2001, 912, 319-327.
19. 廖書翎(2011):感應耦合電漿質譜儀於食品中多重微量元素分析與鉻、砷及硒物種型態分析之應用。國立中山大學化學系碩士論文。
20. Jiang, S. J.; Houk, R. S.; Stevens, M. A., Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry. Anal. Chem. 1988, 60, 1217-1221.
21. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS.: a tutorial review. Spectrochim. Acta, Part B 2002, 57, 1361-1452.
22. Tanner, S. D.; Baranov, V. I.; Vollkopf, U., A dynamic reaction cell for inductively coupled plasma mass spectrometry.(ICP-DRC-MS). J. Anal. At. Spectrom. 2000, 15, 1261-1269.
23. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass Spectrom. 2002, 13, 1176-1185.
24. Bednar, A. J.; Kirgan, R. A.; Jones, W. T., Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal. Chim. Acta 2009, 632, 27-34.
25. 劉恆嚴(2013):液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於人體尿液中含砷及硒化合物與營養補給品中含鉻及砷化合物之分析應用。國立中山大學化學系碩士論文。
26. Alava, P.; Tack, F.; Laing, G. D.; de Wiele, T. V., HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota. Biomed. Chromatogr. 2012, 26, 524-533.
27. Ščančar, J.; Milačič, R., A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. J. Anal. At. Spectrom. 2014, 29, 427-443.
28. Kuo, C. Y.; Jiang, S. J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22, 636-641.
29. Guo, W.; Hu, S.; Li, X.; Zhao, J.; Jin, S.; Liu, W.; Zhang, H., Use of ion-molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS. Talanta 2011, 84, 887-894.
30. Marcinkowska, M.; Komorowicz, I.; Baralkiewicz, D., New procedure for multielemental speciation analysis of five toxic species: As(III), As(V), Cr(VI), Sb(III) and Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS. Anal. Chim. Acta 2016, 920, 102-111.
31. Ambushe, A. A.; McCrindle, R. I.; McCrindle, C. M. E., Speciation of chromium in cow's milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24, 502-507.
32. Marcinkowska, M.; Komorowicz, I.; Baralkiewicz, D., Study on multielemental speciation analysis of Cr(VI), As(III) and As(V) in water by advanced hyphenated technique HPLC/ICP-DRC-MS. Fast and reliable procedures. Talanta 2015, 144, 233-240.
33. Camera, A. S.; Maranhão, T. A.; Oliveira, F. J. S.; Silva, J. S. A.; Frescura, V. L. A., Total mercury determination in petroleum green coke and oily sludge samples by cold vapor atomic fluorescence spectrometry. J. Braz. Chem. Soc. 2015, 26, 2116-2124.
34. Tsoi, Y. K.; Leung, K. S., Simultaneous determination of seven elemental species in estuarine waters by LC-ICP-DRC-MS. J. Anal. At. Spectrom. 2010, 25, 880-885.
35. Sun, J.; Yang, Z.; Lee, H.; Wang, L., Simultaneous speciation and determination of arsenic, chromium and cadmium in water samples by high performance liquid chromatography with inductively coupled plasma mass spectrometry. Anal. Methods. 2015, 7, 2653-2658.
36. Ma, L.; Yang, Z.; Tang, J.; Wang, L., Simultaneous separation and determination of six arsenic species in rice by anion-exchange chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2016, 39, 2105-2113.
37. Grotti, M.; Ardini, F.; Terol, A.; Magi, E.; Todoli, L., Influence of chemical species on the determination of arsenic using inductively coupled plasma mass spectrometry at a low liquid flow rate. J. Anal. At. Spectrom. 2013, 28, 1718–1724.
38. Pirkle, W. H.; Welch, C. J., A convenient void volume marker for several chiral HPLC columns. J. Liq. Chromatogr. Relat. Technol. 1991, 14, 1-8.
39. Soriano, E.; Yusà, V.; Pastor, A.; Guardia, M., Dynamic reaction cell inductively couple plasma-mass spectrometry optimization for seawater analysis. Microchem. J. 2018, 137, 363-370.
40. Narukawa, T.; Chiba, K., Oxygenation mechanism of ion in dynamic reaction cell ICP-MS. Anal Sci. 2013, 29, 747-752.
41. Tanner, S. D.; Baranov, V. I., Theory, design, and operation of a dynamic reaction cell for ICP-MS. At. Spectrosc. 1999, 20, 45-52.
42. Sadiq, N. W.; Beauchemin, D., Simultaneous Speciation analysis of arsenic, chromium, and selenium in the bioaccessible fraction for realistic risk assessment of food safety. Anal. Chem. 2017, 89, 13299-13304.
43. Lin, Y.-A.; Jiang, S.-J.; Sahayam, A. C.; Huang, Y.-L., Speciation of chromium in edible animal oils after microwave extraction and liquid chromatography inductively coupled plasma mass spectrometry. Microchem. J. 2016, 128, 274-278.
44. Leese, E.; Morton, J.; Tan, E.; Gardiner, P. H.; Carolan, V. A., μLC-ICP-MS determinations of unexposed UK urinary arsenic speciation reference values. J. Anal. Toxicol. 2014, 38, 24-30.
45. Jabłońska-Czapla, M., Antimony, Arsenic and Chromium Speciation Studies in Biała Przemsza River (Upper Silesia, Poland) Water by HPLC-ICP-MS. Int. J. Environ. Res. Public Health 2015, 12, 4739-4757.
46. Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S., Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733-2745.
47. Séby, F.; Vacchina, V., Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices. TrAC, Trends Anal. Chem. 2018, 104, 54-68.
48. Sanchez-Prado, L.; Garcia-Jares, C.; Llompart, M., Microwave-assisted extraction: Application to the determination of emerging pollutants in solid samples. J. Chromatogr. A 2010, 1217, 2390-2414.
49. Tang, Y.; Su, Y.; Yang, N.; Zhang, L.; Lv, Y., Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal. Chem. 2014, 86, 4528-4535.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code