Responsive image
博碩士論文 etd-0616118-111840 詳細資訊
Title page for etd-0616118-111840
論文名稱
Title
液相層析結合感應耦合電漿質譜儀於酒品、飲料及米樣品中鉻物種之分析應用
Determination of chromium species in wines, beverages and rice samples by HPLC-ICP-MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-10
繳交日期
Date of Submission
2018-07-16
關鍵字
Keywords
逆相層析、感應耦合電漿質譜儀、動態反應系統、物種分析、鉻物種
ICP-MS, DRC system, Reversed phase chromatography, Species analysis, Chromium species
統計
Statistics
本論文已被瀏覽 5714 次,被下載 28
The thesis/dissertation has been browsed 5714 times, has been downloaded 28 times.
中文摘要
近年來,由於食品安全問題日益嚴重,對於食品中有害物質之偵測非常受重視。鉻為普遍的金屬元素,其三價鉻物種被認為是微量的營養素,六價鉻物種則是一種致癌物,因此對於食物中之鉻物種評估相當重要。本研究將使用液相層析儀(HPLC)結合感應耦合電漿質譜儀(ICP-MS)對食品中之鉻物種進行分析。
第一部分研究,利用C18逆相層析法,結合ICP-MS對酒品及飲料中之鉻物種進行分離及定量。使用0.5 mM TBAP、0.1 mM EDTA及3% (v/v)甲醇(pH 6.9)作為動相,以等位沖堤之方式在4分鐘內分離Cr(III)和Cr(VI)。使用ICP-MS對鉻偵測時,會受到40Ar12C+、40Ar13C+等光譜干擾,因此藉由動態反應系統(DRC),以NH3作為反應氣體,降低偵測52Cr及53Cr時所產生之干擾。Cr(III)和Cr(VI)所得之偵測極限分別為0.06 ng mL-1及0.07 ng mL-1。方法的準確性選用NIST SRM 1643c及NIST SRM 1643e兩河水標準參考樣品進行評估;其添加回收率介於99%-101%之間,顯示此方法具有良好可行性及準確性。
第二部分研究,利用C8微逆相層析法搭配薄膜去溶劑系統(ARIDUS)結合ICP-MS對米樣品中之鉻物種進行分離及定量。此研究期望利用ARIDUS去除溶劑以及揮發物質的干擾得到更低之偵測極限。藉由0.2 mM TBAP、0.15 mM EDTA及10% (v/v)甲醇(pH 6.9)作為動相,以等位沖堤之方式在6分鐘內分離Cr(III)和Cr(VI)。以NH3作為反應氣體,降低使用ICP-MS偵測52Cr及53Cr所產生之光譜干擾。Cr(III)和Cr(VI)所得之偵測極限分別為0.05 ng mL-1及0.07 ng mL-1。本方法應用於NIST SRM 1573a蕃茄葉和米樣品中之鉻物種分析。在動相中添加1% (v/v) HF和1 mM EDTA作為萃取試劑以微波加熱的方式對所有固體樣品中之鉻物種進行萃取。萃取液使用HPLC-ARIDUS-DRC-ICP-MS所得之鉻濃度分析結果與DRC-ICP-MS所得之結果具有良好一致性;且物種添加回收率為96%-104%之間,顯示此方法之定量結果具有良好可行性及準確性。
Abstract
Recently, the detection of harmful substances in foods becomes important because of food safety issues have become more serious. Chromium is an universal metal element. The most toxic Cr species is Cr(VI), a carcinogen, whereas Cr(III) has been considered a micronutrient. Hence, the assessment of chromium species in food is very important. This study will use High-Performance Liquid Chromatograph (HPLC) combine with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to analyze chromium species in foods.
First research, speciation and detection of chromium in wines and beverages was carried out using C18 reversed phase HPLC and ICP-MS in tandem. Isocratic elution using 0.5 mM TBAP, 0.1 mM EDTA and 3% (v/v) methanol at pH 6.9 as mobile phase separated Cr(III) and Cr(VI) in less than 4 min. The determination of chromium by ICP-MS is associated with spectral interferences from 40Ar12C+, 40Ar13C+, etc. Therefore, spectral interferences in ICP-MS at chromium m/z 52 and m/z 53 were reduced using NH3 in Dynamic Reaction Cell system (DRC). The detection limits of Cr(III) and Cr(VI) were 0.06 ng mL-1and 0.07 ng mL-1, respectively. The accuracy of the method has been validated by two river NIST SRMs, NIST SRM 1643c and NIST SRM 1643e. And, the spike recovery was in the range of 99%-101% to demonstrate that the proposed method had good feasibility and accuracy.
Second research, speciation of chromium in rice sample was carried out C8 microbore reversed phase column with membrane desolvation sample introduction system (ARIDUS) coupled with ICP-MS. This study was expected that using ARIDUS to remove the interference of solvents and volatiles to get lower detection limit. Isocratic elution using 0.2 mM TBAP, 0.15 mM EDTA and 10% (v/v) methanol at pH 6.9 as mobile phase separated Cr(III) and Cr(VI) in less than 6 min. Spectral interferences in ICP-MS at chromium m/z 52 and m/z 53 were reduced using NH3 in the DRC. The detection limits of Cr(III) and Cr(VI) were 0.05 ng mL-1and 0.07 ng mL-1, respectively. The established method was applied to determine chromium species present in NIST SRM 1573a Tomato Leaves and rice sample. Chromium species were extracted from all solid sample using microwave heating with 1% (v/v) HF and 1 mM EDTA in mobile phase. HPLC-ARIDUS-DRC-ICP-MS results showed good agreement with total chromium concentrations in extracts obtained by ICP-MS analysis. The spike recovery was in the range of 96%-104% to illustrate that the proposed method had good accuracy and feasibility.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x

第一章 液相層析結合感應耦合電漿質譜儀於酒類及功能性飲品中鉻物種分析之應用
壹、前言 1
貳、實驗部分 5
一、動態反應槽基本原理 5
二、儀器裝置 8
三、試藥及溶液之配製 10
四、樣品及標準參考樣品 11
參、實驗流程 11
一、液相層析分離條件最適化探討 11
二、DRC-ICP-MS系統最適化 12
三、再現性 14
四、校正曲線與偵測極限 14
五、真實樣品分析 14
肆、結果與討論 15
一、液相層析條件之最適化探討 15
二、DRC-ICP-MS系統最適化條件 23
三、再現性 26
四、校正曲線及偵測極限 26
五、方法準確性的評估 33
六、真實樣品分析 33
伍、結論 47
陸、參考文獻 48

第二章 液相層析結合感應耦合電漿質譜儀於食用白米及米精中鉻物種分析之應用
壹、前言 53
貳、薄膜去溶劑進樣裝置及其與液相層析之介面 55
參、實驗部分 57
一、儀器裝置 57
二、試藥及溶液之配製 59
三、樣品及標準參考樣品 60
肆、實驗流程 61
一、液相層析分離條件最適化探討 61
二、薄膜去溶劑進樣系統條件最適化探討 61
三、DRC-ICP-MS系統最適化 61
四、再現性 62
五、校正曲線與偵測極限 62
六、萃取條件最適化 63
七、真實樣品分析 63
伍、結果與討論 68
一、液相層析條件之最適化探討 68
二、薄膜去溶劑系統最適化探討 76
三、DRC-ICP-MS系統最適化條件 79
四、再現性 88
五、校正曲線與偵測極限的估計 88
六、萃取最適化條件 93
七、方法準確性之評估 100
八、真實樣品分析 100
陸、結論 111
柒、參考文獻 112

圖目錄
第一章 液相層析結合感應耦合電漿質譜儀於酒類及功能性飲品中鉻物種分析之應用
圖1-1三價鉻與六價鉻在不同pH值環境下型態之轉變 3
圖1-2 EDTA(Ethylenedinitrilotetraacetic acid, disodium salt dehydrate)結構式 4
圖1-3 TBAP(Tetra-n-butylammonium phosphate)之結構式 4
圖1-4 DRC-ICP-MS儀器示意圖 7
圖1-5 HPLC-DRC-ICP-MS之系統圖 9
圖1-6改變EDTA濃度對層析之影響 17
圖1-7改變TBAP濃度對層析之影響 18
圖1-8改變動相MeOH濃度對層析之影響 19
圖1-9改變動相pH值對層析之影響 21
圖1-10以NH3為反應氣體,改變氣體流速對鉻訊號之影響 24
圖1-11 Rpq值對鉻訊號之影響 25
圖1-12 AFV對鉻訊號之影響 27
圖1-13鉻在不同模式下之層析圖 28
圖1-14標準參考品SRM 1643c層析圖 34
圖1-15標準參考品SRM 1643e層析圖 35
圖1-16紅酒#1之層析圖 37
圖1-17紅酒#2之層析圖 38
圖1-18啤酒之層析圖 39
圖1-19黑麥汁樣品之層析圖 43
圖1-20葡萄糖胺飲之層析圖 44
圖目錄
第二章 液相層析結合感應耦合電漿質譜儀於食用白米及米精中鉻物種分析之應用
圖2-1薄膜去溶劑進樣系統之構造圖 56
圖2-2 HPLC-ARIDUS-DRC-ICP-MS之系統圖 58
圖2-3實驗流程圖 64
圖2-4真實樣品及標準參考樣品萃取流程圖 67
圖2-5改變TBAP濃度對層析分離之影響 69
圖2-6改變EDTA濃度對層析圖之影響 70
圖2-7改變動相流速對層析分離之影響 72
圖2-8改變NH4NO3濃度對層析圖之影響 74
圖2-9不同條件下對背景訊號之影響 75
圖2-10 ARIDUS探討Nebulizer gas flow rate對52Cr分析訊號之影響 77
圖2-11 ARIDUS探討Sweep gas流速對52Cr分析訊號之影響 78
圖2-12 ARIDUS探討Oxygen gas flow rate對52Cr分析訊號之影響 80
圖2-13 ARIDUS探討Spray chamber temperature對52Cr分析訊號之影響 81
圖2-14 ARIDUS探討Membrane temperature對52Cr分析訊號之影響 82
圖2-15以NH3為反應氣體,改變氣體流速對鉻訊號之影響 84
圖2-16 Rpq值對鉻訊號之影響 85
圖2-17 AFV對鉻訊號之影響 86
圖2-18鉻在不同模式下之層析圖 87
圖2-19改變EDTA濃度對鉻萃取效率之影響 94
圖2-20不同酸試劑對白米樣品中鉻的萃取效率 95
圖2-21改變HNO3濃度對鉻萃取效率之影響 96
圖2-22改變HF濃度對鉻萃取效率之影響 97
圖2-23為不同濃度HF萃取白米中鉻物種所得之層析圖 98
圖2-24改變時間對於食用米中鉻萃取效率之影響 99
圖2-25參考標準物質NIST SRM 1573a萃取所得之鉻物種層析圖 101
圖2-26食用米#1萃取所得之鉻物種層析圖 103
圖2-27食用米#2萃取所得之鉻物種層析圖 104
圖2-28食用米#3萃取所得之鉻物種層析圖 105
圖2-29米精萃取所得之鉻物種層析圖 109

表目錄
第一章 液相層析結合感應耦合電漿質譜儀於酒類及功能性飲品中鉻物種分析之應用
表1-1 ICP-MS分析鉻時常見之光譜干擾 13
表1-2甲醇濃度對鉻物種波峰高度與背景之比值(S / B)的影響 20
表1-3 pH值對鉻物種波峰高度與背景之比值(S / B)的影響 22
表1-4 HPLC-DRC-ICP-MS系統之操作條件 29
表1-5 HPLC-DRC-ICP-MS測定10 ng mL-1鉻物種之滯留時間與分析訊號再現性 30
表1-6 HPLC-DRC-ICP-MS測定鉻物種之校正曲線與偵測極限 31
表1-7鉻物種分離時間及偵測極限之比較 32
表1-8以HPLC-DRC-ICP-MS測定水樣參考標準品中鉻物種之含量及回收率 36
表1-9鉻物種各波峰同位素之比值及其T-test所得之結果 40
表1-10以HPLC-DRC-ICP-MS測定酒品中鉻物種之含量 41
表1-11鉻物種各波峰同位素之比值及其T-test所得之結果 45
表1-12以HPLC-DRC-ICP-MS測定鉻物種之含量 46
表目錄
第二章 液相層析結合感應耦合電漿質譜儀於食用白米及米精中鉻物種分析之應用
表2-1微波消化升溫條件 65
表2-2流速對鉻物種波峰高度與背景比值(S / B)之影響 73
表2-3 HPLC-ARIDUS-DRC-ICP-MS系統之操作條件 89
表2-4以HPLC-ARIDUS-DRC-ICP-MS測定5 ng mL-1鉻物種之滯留時間與分析訊號再現性 90
表2-5 HPLC-ARIDUS-DRC-ICP-MS測定鉻物種之校正曲線與偵測極限 91
表2-6 HPLC-ARIDUS-DRC-ICP-MS測定標準參考物質NIST SRM 1573a中鉻物種之含量及回收率 102
表2-7鉻物種波峰同位素之比值及其T-test所得之結果 106
表2-8以HPLC-ARIDUS-DRC-ICP-MS測定鉻物種之含量及回收率 108
表2-9鉻物種各波峰同位素之比值及其T-test所得之結果 110
表2-10以HPLC-ARIDUS-DRC-ICP-MS測定鉻物種之含量及回收率 110
參考文獻 References
第一章
1.Duran, A.; Tuzen, M.; Soylak, M., Speciation of Cr(III) and Cr(VI) in geological and water samples by ytterbium(III) hydroxide coprecipitation system and atomic
absorption spectrometry. Food Chem. Toxicol. 2011, 49, 1633-1637.
2.Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium
(III) and chromium (VI) in environmental water samples. Anal. Chim. Acta 2013, 770, 140-146.
3.Kaewkhomdee, N.; Mounicou, S.; Szpunar, J.; Lobinski, R.; Shiowatana, J., Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential
extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 2010, 396, 1355-1364.
4.Ambushe, A. A.; McCrindle, R. I.; McCrindle, C. M. E., Speciation of chromium in cow's milk by solid-phase extraction/dynamic reaction cell inductively coupled
plasma mass spectrometry (DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24, 502-507.
5.http://foodbank.firdi.org.tw/consumer/documents/008606/0086060151.htm
6.Wolf, R. E.; Morrison, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample
preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733–2745.
7.Chen, Y.; Chen, J.; Xi, Z.; Yang, G.; Wu, Z.; Li, J.; Fu, F., Simultaneous analysis of Cr(III), Cr(VI), and chromium picolinate in foods using capillary electrophoresis-
inductively coupled plasma mass spectrometry. Electrophoresis 2015, 36, 1208-1215.
8.Chen, Z. L.; Naidu, R.; Subramanian, A. Separation of chromium (III) and chromium (VI) by capillaryelectrophoresis using 2,6-pyridinedicarboxylic acid as a pre-
column complexation agent. J. Chromatogr. A 2001, 927, 219-227.
9.Guo, X.; Liu, W.; Bai, X.; He, X.; Zhang, B., Speciation of chromium in chromium yeast. World J. Microbiol. Biotechnol. 2014, 30, 3245-3250.
10.Sadiq, N. W.; Beauchemin, D., Simultaneous Speciation Analysis of Arsenic, Chromium, and Selenium in the Bioaccessible Fraction for Realistic Risk Assessment
of Food Safety. Anal. Chem. 2017, 89, 13299-13304.
11.Vacchina, V.; de la Calle, I.; Seby, F., Cr(VI) speciation in foods by HPLC-ICP-MS: investigation of Cr(VI)/food interactions by size exclusion and Cr(VI) determination
and stability by ion-exchange on-line separations. Anal. Bioanal. Chem. 2015, 407, 3831-3839.
12.Perez-Escalante, E.; Gonzalez-Olivares, L. G.; Cruz-Guerrero, A. E.; Galan-Vidal, C. A.; Paez-Hernandez, M. E.; Alvarez-Romero, G. A., Size exclusion chromatography
(SEC-HPLC) as an alternative to study thrombin inhibition. J. Chromatogr. B 2018, 1074-1075, 34-38.
13.Wang, H. J.; Du, X. M.; Wang, M.; Wang, T. C.; Ou-Yang, H.; Wang, B.; Zhu, M. T.; Wang, Y.; Jia, G.; Feng, W. Y., Using ion-pair reversed-phase HPLC ICP-MS to
simultaneously determine Cr(III) and Cr(VI) in urine of chromate workers. Talanta 2010, 81, 1856-1860.
14.Markiewicz, B.; Komorowicz, I.; Sajnog, A.; Belter, M.; Baralkiewicz, D., Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing
metrological traceability: a review since 2000. Talanta 2015, 132, 814-828.
15.Xing, L.; Beauchemin, D., Chromium speciation at trace level in potable water using hyphenated ion exchange chromatography and inductively coupled plasma
mass spectrometry with collision/reaction interface. J. Anal. At. Spectrom. 2010, 25, 1046-1055.
16.Popp, M.; Hann, S.; Koellensperger, G., Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to
inductively coupled plasma mass spectrometry--a review. Anal. Chim. Acta 2010, 668, 114-129.
17.J. KotasÂ, Z. S. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263-283.
18.廖書翎(2011):感應耦合電漿質譜儀於食品中多重微量元素與鉻、砷及硒物種型態分析之應用。國立中山大學化學系碩士論文。
19.Batista, B. L.; Rodrigues, J. L.; Nunes, J. A.; Souza, V. C.; Barbosa, F., Jr., Exploiting dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-
MS) for sequential determination of trace elements in blood using a dilute-and-shoot procedure. Anal. Chim. Acta 2009, 639, 13-18.
20.Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B., Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with
dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 1051-1060.
21.Delafiori, J.; Ring, G.; Furey, A., Clinical applications of HPLC-ICP-MS element speciation: A review. Talanta 2016, 153, 306-331.
22.Ščančar, J.; Milačič, R., A critical overview of Cr speciation analysis based on high performance liquid chromatography and spectrometric techniques. J. Anal. At.
Spectrom. 2014, 29, 427-443.
23.Markiewicz, B.; Komorowicz, I.; Baralkiewicz, D., Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICP-DRC-IDMS and HPLC/ICP-
DRC-IDMS. Talanta 2016, 152, 489-497
24.Sun, J.; Yang, Z.; Lee, H.; Wang, L., Simultaneous speciation and determination of arsenic, chromium and cadmium in water samples by high performance liquid
chromatography with inductively coupled plasma mass spectrometry. Anal. Methods 2015, 7, 2653-2658.
25.Marcinkowska, M.; Komorowicz, I.; Baralkiewicz, D., New procedure for multielemental speciation analysis of five toxic species: As(III), As(V), Cr(VI), Sb(III) and
Sb(V) in drinking water samples by advanced hyphenated technique HPLC/ICP-DRC-MS. Anal. Chim. Acta 2016, 920, 102-111.
26.D'Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F., Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A
review. Anal. Chim. Acta 2011, 698, 6-13.
27.Catalani, S.; Fostinelli, J.; Gilberti, M. E.; Apostoli, P., Application of a metal free high performance liquid chromatography with inductively coupled plasma mass
spectrometry (HPLC–ICP-MS) for the determination of chromium species in drinking and tap water. Int. J. Mass spectrom. 2015, 387, 31-37
28.Kuo, C.-Y.; Jiang, S.-J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22,
636-641.
29.Chang, Y.-L.; Jiang, S.-J., Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass
spectrometry. J. Anal. At. Spectrom. 2001, 16, 858-862.
30.Petrucci, F.; Senofonte, O., Determination of Cr(VI) in cosmetic products using ion chromatography with dynamic reaction cell-inductively coupled plasma-mass
spectrometry (DRC-ICP-MS). Anal. Methods 2015, 7, 5269-5274.
31.Lin, Y.-A.; Jiang, S.-J.; Sahayam, A. C.; Huang, Y.-L., Speciation of chromium in edible animal oils after microwave extraction and liquid chromatography inductively
coupled plasma mass spectrometry. Microchem. J. 2016, 128, 274-278.
32.劉殷孝(2014):液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及含鉻化合物之分析應用。國立中山大學化學系碩士論文。
33. Sun, J.; Ma, L.; Yang, Z.; Wang, L., Optimization of species stability and interconversion during the complexing reaction for chromium speciation by high-
performance liquid chromatography with inductively coupled plasma mass spectrometry. J. Sep. Sci. 2014, 37, 1944-1950.
34.Stanislawska, M.; Janasik, B.; Wasowicz, W., Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-
ICP-MS) for determination of chromium compounds in the air at the workplace. Talanta 2013, 117, 14-19.
35.Hernandez, F.; Seby, F.; Millour, S.; Noel, L.; Guerin, T., Optimisation of selective alkaline extraction for Cr(VI) determination in dairy and cereal products by HPIC-
ICPMS using an experimental design. Food Chem. 2017, 214, 339-346.
36.Unceta, N.; Astorkia, M.; Abrego, Z.; Gomez-Caballero, A.; Goicolea, M. A.; Barrio, R. J., A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by
speciated isotope dilution mass spectrometry. Talanta 2016, 154, 255-262.
37.Kaewkhomdee, N.; Mounicou, S.; Szpunar, J.; Lobinski, R.; Shiowatana, J., Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential
extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal. Chim. Acta 2010, 396, 1355-1364.
38.Cheng, D.; Zhu, H., Determination of L-arginine content in Radix isatidis by a composite fluorescent probe of Pd (II). J Food Drug Anal 2014, 22, 537-541.

第二章
1.全省稻米中重金屬(鋅、鉻、鎳)含量之調查.pdf
2.Zhang, H.; Liu, Q.; Wang, T.; Yun, Z.; Li, G.; Liu, J.; Jiang, G., Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium
(III) and chromium (VI) in environmental water samples. Anal. Chim. Acta 2013, 770, 140-146.
3.Kaewkhomdee,N.; Mounicou, S.; Szpunar, J.; Lobinski, R.; Shiowatana, J., Characterization of binding and bioaccessibility of Cr in Cr-enriched yeast by sequential
extraction followed by two-dimensional liquid chromatography with mass spectrometric detection. Anal. Bioanal. Chem. 2010, 396, 1355-1364.
4.Ravina, A.; Slezak, L., Rubal, A.; Mirsky, N., Clinical use of the trace element chromium(III) in the treatment of diabetes mellitus. J. Trace Elem. Exp. Med. 1995, 8,
183-190.
5.Pechancová, R.; Pluháček, T.; Gallo, J.; Milde, D., Study of chromium species release from metal implants in blood and joint effusion: Utilization of HPLC-ICP-MS.
Talanta 2018, 185, 370-377.
6.Sadiq, N. W.; Beauchemin, D., Simultaneous Speciation Analysis of Arsenic, Chromium, and Selenium in the Bioaccessible Fraction for Realistic Risk Assessment of
Food Safety. Anal. Chem. 2017, 89, 13299-13304.
7.Lin, Y.-A.; Jiang, S.-J.; Sahayam, A. C.; Huang, Y.-L., Speciation of chromium in edible animal oils after microwave extraction and liquid chromatography inductively
coupled plasma mass spectrometry. Microchem. J. 2016, 128, 274-278.
8.Chiha, M.; Samar, M. H.; Hamdaoui, O., Extraction of chromium (VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination
2006, 194, 69-80.
9.Hernandez, F.; Seby, F.; Millour, S.; Noel, L.; Guerin, T., Optimisation of selective alkaline extraction for Cr(VI) determination in dairy and cereal products by HPIC-
ICPMS using an experimental design. Food Chem. 2017, 214, 339-346.
10.Weibel, G.; Waber, H. N.; Eggenberger, U., Mader, U. K., Influence of sample matrix on the alkaline extraction of Cr(VI) in soils and industrial materials. Environ.
Earth Sci. 2016, 75, 1-14.
11.Kuo, C.-Y.; Jiang, S.-J.; Sahayam, A. C., Speciation of chromium and vanadium in environmental samples using HPLC-DRC-ICP-MS. J. Anal. At. Spectrom. 2007, 22,
636-641.
12.Asfaw, A.; Beauchemin, D., Improvement of the capabilities of inductively coupled plasma optical emission spectrometry by replacing the desolvation system of an
ultrasonic nebulization system with a pre-evaporation tube. Spectrochim. Acta Part B 2010, 65, 376-384.
13.Botto, R. I.; Zhu, J. J., Use of an Ultrasonic Nebulizer with Membrane Desolvation for Analysis of Volatile Solvents by Inductively Coupled Plasma Atomic Emission
Spectrometry. J. Anal. At. Spectrom. 1994, 9, 905-912.
14.賴珮珊(2004):感應耦合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種分析之應用。國立中山大學化學系碩士論文。
15.Jensen, B. P.; Gammelgaard, B.; Hansen, S. H.; Andersen, J. V., Comparison of direct injection nebulizer and desolvating microconcentric nebulizer for analysis of
chlorine-, bromine- and iodine-containing compounds by reversed phase HPLC with ICP-MS detection. J. Anal. At. Spectrom. 2003, 18, 891-896.
16.Bluemlein, K.; Krupp, E. M.; Feldmann, J., Advantages and limitations of a desolvation system coupled online to HPLC-ICPqMS/ES-MS for the quantitative
determination of sulfur and arsenic in arseno-peptide complexes. J. Anal. At. Spectrom. 2009, 24, 108-113.
17.Tu, Q.; Wang, T. B.; Welch, C. J.; Wang, P.; Jia, X. J.; Raab, C., Bu, X. D.; Bykowski, D., Hohenstaufen, B.; Doyle, M. P., Identification and Characterization of Isomeric
Intermediates in a Catalyst Formation Reaction by Means of Speciation Analysis Using HPLC-ICPMS and HPLC-ESI-MS. Anal. Chem. 2006, 78, 1282-1289.
18.Markiewicz, B.; Komorowicz, I.; Sajnog, A.; Belter, M.; Baralkiewicz, D., Chromium and its speciation in water samples by HPLC/ICP-MS--technique establishing
metrological traceability: a review since 2000. Talanta 2015, 132, 814-828.
19.Novotny, I.; Farinas, J. C.; Wan, J. L.; Poussel, E.; Mermet, J. M., Effect of power and carrier gas flow rate on the tolerance to water loading in inductively coupled
plasma atomic emission spectrometry. Spectrochim. Acta Part B 1996, 51, 1517-1526.
20.Wolf, R. E.; Morrison, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and chromium: species stability, sample
preservation, and analysis of ash and soil leachates. Anal. Bioanal. Chem. 2011, 401, 2733–2745.
21.Perez-Escalante, E.; Gonzalez-Olivares, L. G.; Cruz-Guerrero, A. E.; Galan-Vidal, C. A.; Paez-Hernandez, M. E.; Alvarez-Romero, G. A., Size exclusion chromatography
(SEC-HPLC) as an alternative to study thrombin inhibition. J. Chromatogr. B 2018, 1074-1075, 34-38.
22.Markiewicz, B.; Komorowicz, I.; Baralkiewicz, D., Accurate quantification of total chromium and its speciation form Cr(VI) in water by ICP-DRC-IDMS and HPLC/ICP-
DRC-IDMS. Talanta 2016, 152, 489-497
23.Wolf, R. E.; Morrison, J. M.; Goldhaber, M. B., Simultaneous determination of Cr(III) and Cr(VI) using reversed-phased ion-pairing liquid chromatography with
dynamic reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2007, 22, 1051-1060.
24.Duo, L. A.; Lian, F.; Zhao, S. L., Enhanced uptake of heavy metals in municipal solid waste compost by turfgrass following the application of EDTA. Environ. Monit.
Assess. 2010, 165, 377-387.
25.Zhao, S.; Lian, F.; Duo, L., EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and
associated potential leaching risk. Bioresour. Technol. 2011, 102, 621-626.
26.Chung, C. H.; Brenner, I.; You, C. F., Comparison of microconcentric and membrane-desolvation sample introduction systems for determination of low rare earth
element concentrations in surface and subsurface waters using sector field inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 2009, 64,
849-856.
27.Akinbo, O. T.; Carnahan, J. W., Membrane desolvation for the analysis of organic solutions and liquid chromatographic samples with low power helium microwave
induced plasma atomic emission detection. Anal. Chim. Acta 1999, 390, 217-226.
28.Sung, Y. G.; Lim, H. B., Double membrane desolvator for direct analysis of isopropyl alcohol in inductively coupled plasma atomic emission spectrometry (ICP-AES)
and inductively coupled plasma mass spectrometry (ICP-MS). Microchem. J. 2000, 64, 51-57.
29.Yang, J. F.; Conver, T. S.; Koropchak, J. A.; Leighty, D. A., Use of a multi-tube Nafion(R) membrane dryer for desolvation with thermospray sample introduction to
inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta Part B 1996, 51, 1491-1503.
30.Petrucci, F.; Senofonte, O., Determination of Cr(VI) in cosmetic products using ion chromatography with dynamic reaction cell-inductively coupled plasma-mass
spectrometry (DRC-ICP-MS). Anal. Methods 2015, 7, 5269-5274.
31.Araujo-Barbosa, U.; Pena-Vazquez, E.; Barciela-Alonso, M. C.; Costa Ferreira, S. L.; Pinto Dos Santos, A. M.; Bermejo-Barrera, P., Simultaneous determination and
speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS. Talanta 2017, 170, 523-529.
32.Guo, X.; Liu, W.; Bai, X.; He, X.; Zhang, B., Speciation of chromium in chromium yeast. World J. Microbiol. Biotechnol. 2014, 30, 3245-3250.
33.Hernandez, F.; Jitaru, P.; Cormant, F.; Noel, L.; Guerin, T., Development and application of a method for Cr(III) determination in dairy products by HPLC-ICP-MS. Food
Chem. 2018, 240, 183-188.
34.Unceta, N.; Astorkia, M.; Abrego, Z.; Gomez-Caballero, A.; Goicolea, M. A.; Barrio, R. J., A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by
speciated isotope dilution mass spectrometry. Talanta 2016, 154, 255-262.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code