Responsive image
博碩士論文 etd-0616118-112324 詳細資訊
Title page for etd-0616118-112324
論文名稱
Title
單粒子感應耦合電漿質譜儀於銀及氧化鐵奈米粒子之分析應用
Determination of silver and iron oxide nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-10
繳交日期
Date of Submission
2018-07-16
關鍵字
Keywords
單粒子感應耦合電漿質譜儀、銀奈米粒子、氧化鐵奈米粒子
single particle inductively coupled plasma mass spectrometry, silver nanoparticles, iron oxide nanoparticles
統計
Statistics
本論文已被瀏覽 5681 次,被下載 50
The thesis/dissertation has been browsed 5681 times, has been downloaded 50 times.
中文摘要
單粒子感應耦合電漿質譜儀( Single Particle ICP-MS,SP-ICP-MS )是一種檢測及量化奈米粒子的新興技術,能夠提供元素組成、粒徑分布、數目濃度等資訊。
第一部分研究將以單粒子感應耦合電漿質譜儀對民生用品中的銀奈米粒子釋放量及化學試劑中的銀奈米粒子含量進行分析。研究中使用氣動式霧化器 (Pneumatic Nebulizer,PN )、超音波霧化器(Ultrasonic nebulizer,USN )、薄膜去溶劑系統( Membrane desolvation introduction system,ARIDUS),探討不同進樣系統於銀奈米粒子的分析特性。實驗中探討進樣系統參數、取樣時間、傳輸效率後,使用最適化條件進行分析結果顯示使用USN因具有去溶劑的功能以及較高的霧化效率有較佳偵測極限結果,此方法對銀奈米粒子粒徑偵測極限為18 nm;數目濃度偵測極限為36 particles mL-1。實驗中使用陽離子交換樹酯(Chelex-100)管柱線上結合SP-ICP-MS進行分析以去除大量銀離子干擾,且在高濃度的共存陽離子 (Na+、K+、Ca2+、Mg2+) 環境下Chelex-100仍然有良好的去除銀離子效果。最後使用USN-SP-ICP-MS對於市售口罩、食品保鮮袋、濾水器中的銀奈米粒子釋放量進行探討以及分析化學試劑中的銀奈米粒子含量及型態,並且搭配穿透式電子顯微鏡進行實驗結果驗證。
第二部分使用超音波霧化器連接SP-ICP-MS分析化學試劑中氧化鐵奈米粒子,搭配使用動態反應室(Dynamic reaction cell,DRC),選擇氨氣為反應氣體以減輕分子離子40Ar16O+干擾,實驗中探討進樣系統參數、奈米粒子濃度、傳輸效率。使用最適化條件進行分析後顯示方法的粒徑偵測極限為16 nm;數目濃度偵測極限為36 particles mL-1。實驗中使用陽離子交換樹酯(Chelex-100)管柱線上結合SP-ICP-MS進行分析以去除大量鐵離子干擾,且在高濃度的共存陽離子 (Na+、K+、Ca2+、Mg2+) 環境下Chelex-100仍然有良好的去除鐵離子效果。最後將此方法運用於分析化學試劑中的氧化鐵奈米粒子含量及型態,並且搭配穿透式電子顯微鏡進行實驗結果驗證。
Abstract
Single particle ICP-MS (SP-ICP-MS) is promising technique for nanoparticle characterization in its ability to provide information on elemental composition, nanoparticle size, size distribution and number concentration.
The first research, determination of silver nanoparticles (AgNPs) in daily commodities and chemical solvents based on single particle detection by ICP-MS was studied. In the experiment, the analytical performance of three sample introduction systems, a pneumatic nebulizer (PN), a ultrasonic nebulizer (USN) and a membrane desolvation introduction system (ARIDUS), was compared for the characterization of AgNPs and the system parameters, nanoparticle concentration and transport efficiency, were investigated. Using optimal conditions, the results showed that USN had better performance due to its ability to remove solvents and enhance nebulization efficiency. Size detection limit was 18 nm and number concentration detection limit was 36 particles mL-1. Using online coupling of cation exchange column (Chelex-100) with SP-ICP-MS successfully removed interfering silver ions and in condition of high concentration cations (Na+、K+、Ca2+、Mg2+), the remove efficiency of silver ions was still well. This method was applied to masks, food storage bags, water filters and chemical solvents. Finally, size measurements performed by SP-ICP-MS were validated by transmission electron microscopy measurements.
The second research, determination of iron oxide nanoparticles (Fe3O4 NPs)in chemical solvents by USN-SP-ICP-MS was studied. The interfering 40Ar16O+ ions were reduced by using NH3 as reaction cell gas. In the experiment,the USN system parameters, nanoparticle concentration and transport efficiency were investigated. Using optimal conditions, the results showed that size detection limit was 16 nm and number concentration detection limit was 36 particles mL-1. Using online coupling of cation exchange column (Chelex-100) with SP-ICP-MS successfully removed interfering iron ions even if the solution was in condition of high concentration cations. Eventually, this method was applied to chemical solvents and size measurements performed by SP-ICP-MS were validated by transmission electron microscopy measurements.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vii
圖目錄 ix
表目錄 xii
第一章 單粒子感應耦合電漿質譜儀於民生用品與化學試劑中銀奈米粒子之分析
壹、前言 1
一、研究背景 1
二、單粒子感應耦合電漿質譜儀簡介 4
貳、實驗部分 7
一、儀器裝置及操作條件 7
二、試藥及溶液的配製 9
參、實驗過程 13
一、進樣系統操作條件之最適化 13
二、取樣時間之最適化 13
三、銀奈米粒子濃度與傳輸效率之探討 13
四、銀奈米粒子粒徑分析 14
五、銀奈米粒子數目濃度分析 14
六、銀奈米粒子標準品之分析驗證 15
七、陽離子交換樹脂之探討 15
八、樣品製備與分析 16
肆、結果與討論 18
一、進樣系統操作條件之最適化 18
二、取樣時間之最適化 29
三、銀奈米粒子濃度與傳輸效率之探討 29
四、銀奈米粒子粒徑分析 30
五、銀奈米粒子數目濃度分析 41
六、超音波霧化器優點 44
七、銀奈米粒子標準品之分析驗證 46
八、陽離子交換樹脂之探討 48
九、真實樣品之分析應用 53
伍、結論 69
陸、參考文獻 70
第二章 單粒子感應耦合電漿質譜儀於化學試劑中氧化鐵奈米粒子之分析
壹、前言 76
一、研究背景 76
二、動態反應室簡介 78
貳、實驗部分 80
一、儀器裝置及操作條件 80
二、試藥及溶液的配製 83
參、實驗過程 84
一、DRC系統之最適化 84
二、超音波霧化器操作條件之最適化 85
三、動態反應室對單粒子分析之影響 85
四、氧化鐵奈米粒子濃度與傳輸效率之探討 85
五、氧化鐵奈米粒子粒徑分析 85
六、氧化鐵奈米粒子數目濃度分析 86
七、陽離子交換樹脂之探討 87
八、樣品製備與分析 87
肆、結果與討論 89
一、DRC系統之最適化 89
二、超音波霧化器操作條件之最適化 93
三、動態反應室對單粒子分析之影響 97
四、氧化鐵奈米粒子濃度與傳輸效率之探討 100
五、氧化鐵奈米粒子粒徑分析 100
六、氧化鐵奈米粒子數目濃度分析 101
七、陽離子交換樹脂之探討 106
八、真實樣品之分析應用 109
伍、結論 120
陸、參考文獻 121
參考文獻 References
1. Yu, S. J.; Yin, Y. G.; Liu, J. F., Silver nanoparticles in the environment. Environ. Sci. Process. Impact2013,15, 78-92.
2. Qasim, M.; Udomluck, N.; Chang, J.; Park, H.; Kim, K., Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.Int. J. Nanomed. 2018,13, 235-249.
3. Prabhu, S.; Poulose, E. K., Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012.
4. Bar‐Ilan, O.; Albrecht, R. M.; Fako, V. E.;Furgeson, D. Y., Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small. 2009,5, 1897-1910.
5. Vidmar, J.; Buerki-Thurnherr, T.; Loeschner, K., Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS. J. Anal. At. Spectrom.2018, 33, 752-761.
6. Braydich-Stolle, L.; Hussain, S.; Schlager, J. J.; Hofmann, M. C., In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005,88, 412-419.
7. 科技大觀園奈米科技與生物醫學:體內殘留的奈米粒子.
8. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles.J. Chem. Phys. 2002,116, 6755-6759.
9. Sondi, I.; Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.J.Colloid Interface Sci. 2004,275, 177-182.
10. Hassellov, M.; Readman, J. W.; Ranville, J. F.; Tiede, K., Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology.2008, 17, 344-361.
11. Taboada-Lopez, M. V.; Iglesias-Lopez, S.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Pineiro, A., Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS.Anal. Chim. Acta2018,1018, 16-25.
12. Zhou, X. X.; Liu, J. F.; Jiang, G. B., Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters. Environ. Sci. Technol. 2017,51, 3892-3901.
13. Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J., Speciation of silver nanoparticles and silver(I) by reversed-phase liquid chromatography coupled to ICPMS. Anal. Chem. 2013,85, 1316-1321.
14. Yang, Y.; Luo, L.; Li, H. P.; Wang, Q.; Yang, Z. G.; Qu, Z. P.; Ding, R., Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Talanta 2018,182, 156-163.
15. Mudalige, T. K.; Qu, H.; Linder, S. W., Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona. Anal. Chem. 2015,87, 7395-7401.
16. Hawkins, A. D.; Bednar, A. J.; Cizdziel, J. V.; Bu, K.; Steevens, J. A.; Willett, K. L., Identification of silver nanoparticles in Pimephales promelas gastrointestinal tract and gill tissues using flow field flow fractionation ICP-MS. RSC Adv. 2014,4, 41277-41280.
17. Degueldre, C.; Favarger, P. Y., Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids Surf. A2003, 217, 137-142.
18. Mozhayeva, D.; Strenge, I.; Engelhard, C., Implementation of Online Preconcentration and Microsecond Time Resolution to Capillary Electrophoresis Single Particle Inductively Coupled Plasma Mass Spectrometry (CE-SP-ICP-MS) and Its Application in Silver Nanoparticle Analysis. Anal. Chem. 2017,89, 7152-7159.
19. Cao, Y.; Mo, G.; Feng, J.; He, X.; Tang, L.; Yu, C.; Deng, B., Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Anal. Chim. Acta 2018,1028, 22-31.
20. Aznar, R.; Barahona, F.; Geiss, O.; Ponti, J.; Jose Luis, T.; Barrero-Moreno, J., Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta 2017,175, 200-208.
21. Ramos, K.; Gomez-Gomez, M. M.; Camara, C.; Ramos, L., Silver speciation and characterization of nanoparticles released from plastic food containers by single particle ICPMS. Talanta 2016,151, 83-90.
22. Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P., Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol.2014,48, 10291-10300.
23. Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F., Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011,83, 9361-9369.
24. 吳承翰. 單粒子感應耦合電漿質譜儀於銀奈米粒子與銀離子之分析. 國立中山大學,高雄市, 2016.
25. Perkin Elmer Nanoparticle Application with NexION 350.
26. Lamsal, R. P.; Jerkiewicz, G.; Beauchemin, D., Improving accuracy in single particle inductively coupled plasma mass spectrometry based on conventional standard solution calibration. Microchem. J.2018,137, 485-489.
27. Stephan, C., Neubauer, K., PerkinElmer, Inc., Shelton, CT. “Single Particle Inductively Coupled Plasma Mass Spectrometry: Understanding How and Why.” PerkinElmer. 2014.
28. 許晏霖.台灣西南海域微量元素(鎘、銅、鎳、鋅)分布. 國立中山大學, 高雄市,2011.
29. 李冰洁.廖亞龍.亞胺基二乙酸型螯合樹脂應用研究進展與展望. 昆明理工大學,中國雲南省, 2015.
30. Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P., Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 2014,48, 10291-10300.
31. Laborda, F.; Jiménez-Lamana, J.; Bolea, E.; Castillo, J. R., Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2011,26, 1362-1371.
32. 歐盟食品包裝材料法規EU No 10/2011.
33. Su, Y.-Y.; Li, Z.-M.; Li, M.; Yi, X.-W.; Zhou, G.-Q.; Xu, J.; Zhai, L.-H.; Wei, G.-Y.; Zhu, F.-R., Development of Aerosol Sample Introduction Interface Coupled with ICP-MS for Direct Introduction and Quantitative Online Monitoring of Environmental Aerosol. Aerosol Sci. Technol. 2013, 48, 99-107.
34. Su, Y. Y.; Li, Z. M.; Dong, H. B.; Zhou, G. Q.; Zhai, L. H.; Xu, J.; Huang, N. B.; Zeng, S.; Zhu, F. R., Preliminary study on aerosol particle addition calibration method for on-line quantitative analysis of airborne radioactive particles with ICP-MS. International Journal of Environmental. Anal. Chem. 2011,91, 473-483.
35. Yang, F.; Imothy, T., Use of a multi-tube Nation membrane dryer for desolvation with thermospray sample introduction to inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta B1996,51, 1491-1503.
36. Franze, B.; Strenge, I.; Engelhard, C., Single particle inductively coupled plasma mass spectrometry: evaluation of three different pneumatic and piezo-based sample introduction systems for the characterization of silver nanoparticles. J. Anal. At. Spectrom.2012,27, 1074-1083.
37. Leinonen, H.; Lehto, J., Ion-exchange of nickel by iminodiacetic acid chelating resin Chelex 100. React. Funct. Polym.2000, 43, 1-6.
38. Hetzer, B.; Burcza, A.; Gräf, V.; Walz, E.; Greiner, R., Online-coupling of AF 4 and single particle-ICP-MS as an analytical approach for the selective detection of nanosilver release from model food packaging films into food simulants. Food Control 2017,80, 113-124.
39. Barros, W. R. P.; Wei, Q.; Zhang, G.; Sun, S.; Lanza, M. R. V.; Tavares, A. C., Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochim. Acta 2015,162, 263-270.
1. Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A., Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol.2011, 103, 317-324.
2. Ahmed, M. S. U.; Salam, A. B.; Yates, C.; Willian, K.; Jaynes, J.; Turner, T.; Abdalla, M. O., Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int. J. Nanomed.2017,12, 6973-6984.
3. Hu, Y.; Mignani, S.; Majoral, J. P.; Shen, M.; Shi, X., Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev.2018,47,1874-1900.
4. Dowaidar, M.; Abdelhamid, H. N.; Hallbrink, M.; Freimann, K.; Kurrikoff, K.; Zou, X.; Langel, U., Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery. Sci. Rep. 2017,7, 9159-9170.
5. Pisanic, T. R.; Blackwell, J. D.; Shubayev, V. I.; Finones, R. R.; Jin, S., Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007,28, 2572-2581.
6. Perkin Elmer Nanoparticle Application with NexION 350.
7. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles.J. Chem. Phys.2002,116, 6755-6759.
8. Sondi, I.; Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004,275, 177-182.
9. Hassellov, M.; Readman, J. W.; Ranville, J. F.; Tiede, K., Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles.Ecotoxicology.2008, 17, 344-361.
10. Taboada-Lopez, M. V.; Iglesias-Lopez, S.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Moreda-Pineiro, A., Ultrasound assisted enzymatic hydrolysis for isolating titanium dioxide nanoparticles from bivalve mollusk before sp-ICP-MS.Anal. Chim. Acta2018,1018, 16-25.
11. Candas-Zapico, S.; Kutscher, D. J.; Montes-Bayon, M.; Bettmer, J., Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS. Talanta 2018,180, 309-315.
12. Bolea-Fernandez, E.; Leite, D.; Rua-Ibarz, A.; Balcaen, L.; Aramendía, M.; Resano, M.; Vanhaecke, F., Characterization of SiO2 nanoparticles by single particle-inductively coupled plasma-tandem mass spectrometry. J. Anal. At. Spectrom. 2017,32, 2140-2152.
13. Vidmar, J.; Oprckal, P.; Milacic, R.; Mladenovic, A.; Scancar, J., Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS. Sci. Total Environ. 2018,634, 1259-1268.
14. Moens, L.; Vanhaecke, F.; Bandura, D.; Baranov, V.; Tanner, S., Elimination of isobaric interferences in ICP-MS, using ion–molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study. J. Anal. At. Spectrom.2001,16, 991-994.
15. Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta B2002,57, 1361-1452.
16. Bandura, D. R.; Baranov, V. I.; Tanner, S. D., Inductively coupled plasma mass spectrometer with axial field in a quadrupole reaction cell. J. Am. Soc. Mass Spectrom.2002,13, 1176-1185.
17. Yeh, C.F.; Jiang, S.J., Speciation of V, Cr and Fe by capillaryelectrophoresisbandpass reaction cell inductively coupled plasma mass spectrometry.J.Chromatogr. A2004,1029, 255-261.
18. Ogawa, Y.; Yamasaki, S. I.; Tsuchiya, N., Application of a Dynamic Reaction Cell (DRC) ICP-MS in Chromium and Iron Determinations in Rock, Soil and Terrestrial Water Samples. Anal. Sci.2010, 26, 867-872.
19. Pick, D.; Leiterer, M.; Einax, J. W., Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS. Microchem. J.2010,95 , 315-319.
20. Persson, D. P.; Hansen, T. H.; Laursen, K. H.; Schjoerring, J. K.; Husted, S., Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics.2009, 1, 418-426.
21. Quemet, A.; Brennetot, R.; Chevalier, E.;Prian, E.;Laridon, A. L.;Mariet, C.;Fichet, P.;Laszak, I.;Goutelard, F., Analysis of twenty five impurities in uranium matrix by ICP-MS with iron measurement optimized by using reaction collision cell, cold plasma or medium resolution.Talanta2012,99, 207-212.
22. Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P., Nanoparticle size detection limits by single particle ICP-MS for 40 elements.Environ. Sci. Technol.2014,48, 10291-10300.
23. Laborda, F.; Jimenez-Lamana, J.; Bolea, E.; Castillo, J. R., Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.2011,26, 1362-1371.
24. Barros, W. R. P.; Wei, Q.; Zhang, G.; Sun, S.; Lanza, M. R. V.; Tavares, A. C., Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochim. Acta 2015,162, 263-270.
25. Vidmar, J.; Buerki-Thurnherr, T.; Loeschner, K., Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS. J. Anal. At. Spectrom.2018,33, 752-761.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code