Responsive image
博碩士論文 etd-0616118-174601 詳細資訊
Title page for etd-0616118-174601
論文名稱
Title
螯合配體為電解質添加劑於有機自由基電池氧化還原電位之電化學調控與機制探討
Chelating Ligands as Electrolyte Additives to Modulate the Redox Potential of Lithium Organic Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-10
繳交日期
Date of Submission
2018-08-27
關鍵字
Keywords
螯合配體、理論計算、氧化還原電位、有機自由基電池
redox potential, organic radical batteries, crown ether, DFT calculation
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
Poly(2,2,6,6-tetramethylpiperidin-1-oxy-4-yl methacrylate) (PTMA) 為有機自由基鋰電池 (Li-ORB) 中最常使用的正極高分子材料之一,其氧化還原電位為 3.6 V vs. Li/Li+, 在有機自由基鋰電池中若要改變正極材料的氧化還原電位,通常藉由進行高分子的結構調整,如:改變高分子鏈上官能基、或與其他共軛高分子形成共聚物。本研究利用改變電解液的結構性組成,添加不同濃度的鋰鹽以及螯合配體 12-冠醚-4 (12-crown-4),發現藉由改變電解質的成份比例,即使不進行高分子結構的修飾也可調控有機自由基鋰電池的氧化還原電位。由循環伏安法顯示,在 PTMA||鋰電池含 0.25、0.5、1.0、2.0 M LiClO4-EC/DEC (1/1, v/v) 以及 1、2、4 當量數 12-冠醚-4 的條件下,當僅增加鋰鹽濃度時有機自由基鋰電池之氧化還原電位將往左偏移,若固定鋰鹽濃度並提昇 12-冠醚-4 當量數時,有機自由基鋰電池之氧化還原電位則往右偏移,其電化學電位窗口可在 3.557-3.865 V 區間調控。再由定電流充放電以及交流阻抗分析界定其電化學表現如:循環壽命、離子導電度,與不同電解液組成比例之關係,並結合理論計算探討其形成機制。
Abstract
Poly(2,2,6,6-tetramethylpiperidin-1-oxy-4-yl methacrylate) (PTMA) is one of the most promising cathode-active polymer materials in organic radical batteries (ORB) with a redox potential of 3.6 V versus Li/Li+. To modulate the redox potential of lithium organic batteries (Li-ORB), modifications of polymer structure such as adding functional groups to the polymer chain or polymerizing with other conjugated polymers to form copolymers, are usually required. Herein, we report an electrolyte system using various concentrations of electrolyte salt and chelating ligand to regulate the redox potential of PTMA without changing the polymer structure. From the cyclic voltammetry of Li︱0.25, 0.5, 1.0, and 2.0 M LiClO4-EC/DEC (1/1, v/v)︱PTMA cells with 1, 2, and 4 equiv. of 12-crown-4 (12C4) corresponded to LiClO4, respectively, the redox potential shifts anodically when the LiClO4 concentration is increased in the electrolyte solution; in contrast, a cathodic shift of the redox potential is observed with the incorporation of a larger equivalent of 12C4 in the solution. By applying different concentrations of LiClO4 and 12C4, the redox potential can be modulated between 3.557 to 3.865 V. The redox potentials calculated using density functional theory (DFT)/base set of B3LYP/6-31G(d,p) in polarized continuum model (PCM) also show good agreement with experimental results.
目次 Table of Contents
論文審定書 i
Acknowledgements ii
摘要 iv
Abstract v
Table of Contents vi
List of Figures viii
List of Tables xi
Chapter 1: General Introduction 1
1.1 Introduction 2
1.2 Lithium-ion Batteries 2
1.3 Organic Radical Batteries 4
1.4 Research Motivation 7
Chapter 2: Chemicals and Instruments 8
2.1 Chemicals 9
2.2 Instruments 11
2.2.1 Nuclear Magnetic Resonance (NMR) 11
2.2.2 Electron Paramagnetic Resonance (EPR) 11
2.2.3 Gel Permeation Chromatography (GPC) 11
2.2.4 Electrochemical Analyzer Instrument 12
Chapter 3: Experimental Section 13
3.1 Synthesis of PTMPM via Atom Transfer Radical Polymerization (ATRP) 14
3.2 Oxidation of PTMPM to PTMA 16
3.3 Preparation of PTMA Composite Electrode 17
3.4 Fabrication of Coin Cells 18
3.5 Computational Details in DFT Calculation 19
Chapter 4: Results and Discussion 23
4.1 Properties of PTMA 24
4.2 Ionic Conductivity of Electrolytes 26
4.3 Cyclic Voltammetry Analysis 29
4.3.1 Lithium Salt Concentration 29
4.3.2 Equivalents of 12C4 31
4.4 AC Impedance, Charge-discharge and Cycle Life Characteristics 38
4.5 DFT Calculation 41
Chapter 5: Conclusion 43
References 45
List of Publications 48
List of Presentations 48
Appendix 49
參考文獻 References
(1) Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A. J.; Scrosati, B. Encyclopedia of Electrochemical Power Sources; Elsevier Science, 2013.
(2) Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries; Springer, 2016.
(3) Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev. 2016, 116, 9438.
(4) Nakayama, M.; Taki, H.; Nakamura, T.; Tokuda, S.; Jalem, R.; Kasuga, T. J. Phys. Chem. C 2014, 118, 27245.
(5) Nakayama, N.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.; Kikuchi, K. J. Power Sources 2007, 174, 695.
(6) Yamada, I.; Abe, T.; Iriyama, Y.; Ogumi, Z. Electrochem. Commun. 2003, 5, 502.
(7) Hatakeyama-Sato, K. Radical Polymers with Enhanced Charge Transport and Their Application to Rechargeable Devices. Ph.D. Thesis, Waseda University, 2018.
(8) Poizot, P.; Dolhem, F. Energy Environ. Sci. 2011, 4, 2003.
(9) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.; Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351.
(10) Nishide, H.; Iwasa, S.; Pu, Y.-J.; Suga, T.; Nakahara, K.; Satoh, M. Electrochim. Acta 2004, 50, 827.
(11) Komaba, S.; Tanaka, T.; Ozeki, T.; Taki, T.; Watanabe, H.; Tachikawa, H. J. Power Sources 2010, 195, 6212.
(12) Oyaizu, K.; Nishide, H. Adv. Mater. 2009, 21, 2339.
(13) Nishide, H.; Oyaizu, K. Science 2008, 319, 737.
(14) Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Adv. Mater. 2011, 23, 3751.
(15) Bergner, B. J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P. R.; Janek, J. Phys. Chem. Chem. Phys. 2015, 17, 31769.
(16) Tokue, H.; Murata, T.; Agatsuma, H.; Nishide, H.; Oyaizu, K. Macromolecules 2017, 50, 1950.
(17) Liu, C.; Neale, Z. G.; Cao, G. Mater. Today 2016, 19, 109.
(18) Hu, M.; Pang, X.; Zhou, Z. J. Power Sources 2013, 237, 229.
(19) Goodenough, J. B. Acc. Chem. Res. 2012, 46, 1053.
(20) Levitskiy, O. A.; Sentyurin, V. V.; Magdesieva, T. V. Electrochim. Acta 2018, 260, 459.
(21) Chae, I. S.; Koyano, M.; Sukegawa, T.; Oyaizu, K.; Nishide, H. J. Mater. Chem. A 2013, 1, 9608.
(22) Ueno, K.; Tatara, R.; Tsuzuki, S.; Saito, S.; Doi, H.; Yoshida, K.; Mandai, T.; Matsugami, M.; Umebayashi, Y.; Dokko, K. Phys. Chem. Chem. Phys. 2015, 17, 8248.
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.et al. Gaussian 09; Revision B.01, Gaussian, Inc.: Wallingford CT, 2009.
(24) Kim, K.; Jordan, K. J. Phys. Chem. 1994, 98, 10089.
(25) Stephens, P.; Devlin, F.; Chabalowski, C.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
(26) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
(27) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
(28) Wang, Y.; Nakamura, S.; Ue, M.; Balbuena, P. B. J. Am. Chem. Soc. 2001, 123, 11708.
(29) Parker, V. D. J. Am. Chem. Soc. 1976, 98, 98.
(30) Isse, A. A.; Gennaro, A. J. Phys. Chem. B 2010, 114, 7894.
(31) Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2006, 110, 16066.
(32) Dardenne, N.; Blase, X.; Hautier, G.; Charlier, J.-C.; Rignanese, G.-M. J. Phys. Chem. C 2015, 119, 23373.
(33) Bachman, J. E.; Curtiss, L. A.; Assary, R. S. J. Phys. Chem. A 2014, 118, 8852.
(34) Islam, M. S.; Fisher, C. A. Chem. Soc. Rev. 2014, 43, 185.
(35) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012, 24, 6397.
(36) Kemper, T. W.; Larsen, R. E.; Gennett, T. J. Phys. Chem. C 2014, 118, 17213.
(37) Hall, D. S.; Self, J.; Dahn, J. J. Phys. Chem. C 2015, 119, 22322.
(38) Dai, Y.; Zhang, Y.; Gao, L.; Xu, G.; Xie, J. J. Electrochem. Soc. 2011, 158, A291.
(39) Katsumata, T.; Qu, J.; Shiotsuki, M.; Satoh, M.; Wada, J.; Igarashi, J.; Mizoguchi, K.; Masuda, T. Macromolecules 2008, 41, 1175.
(40) Junk, M. J. Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy; Springer Science & Business Media, 2012.
(41) Reddy, A. K. Modern Electrochemistry; Plenum Press, 2000.
(42) Xu, K. Chem. Rev. 2004, 104, 4303.
(43) Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. 1985, 85, 271.
(44) Pedersen, C. J.; Frensdorff, H. Angew. Chem. Int. Ed. 1972, 11, 16.
(45) Ladd, M. Theor. Chim. Acta. 1968, 12, 333.
(46) Choi, U. H.; Colby, R. H. Macromolecules 2017, 50, 5582.
(47) Menard, D.; Chabanel, M. J. Phys. Chem. 1975, 79, 1081.
(48) Datta, A. J. Phys. Chem. C 2009, 113, 3339.
(49) Ein-Eli, Y.; McDevitt, S. F.; Laura, R. J. Electrochem. Soc. 1998, 145, L1.
(50) Hall, D. S.; Self, J.; Dahn, J. R. J. Phys. Chem. C 2015, 119, 22322.
(51) McEwen, A. B.; McDevitt, S. F.; Koch, V. R. J. Electrochem. Soc. 1997, 144, L84.
(52) Smart, M.; Ratnakumar, B.; Surampudi, S. J. Electrochem. Soc. 1999, 146, 486.
(53) Vogel, H.; Weiss, A. Ber. Bunsenges. Phys. Chem. 1981, 85, 539.
(54) Świergiel, J.; Jadżyn, J. J. Chem. Eng. Data 2012, 57, 2271.
(55) Scholz, F. Thermodynamics of Electrochemical Reactions; Springer, 2010.
(56) Linden, D.; Reddy, T. B. Handbook of Batteries, 3rd Edition; McGraw-Hill: New York, 2002.
(57) Suga, T.; Ohshiro, H.; Sugita, S.; Oyaizu, K.; Nishide, H. Adv. Mater. 2009, 21, 1627.
(58) Wang, W.-H.; Gong, C.; Wang, W.; Kong, F.; Kim, H.; Fullerton-Shirey, S. K.; Seabaugh, A.; Cho, K. Solid State Ionics 2017, 301, 176.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code