Responsive image
博碩士論文 etd-0616119-150110 詳細資訊
Title page for etd-0616119-150110
論文名稱
Title
用於CO2吸收和超級電容器應用的共價氧代氮代苯并環己烷/有機框架的結構
Construction of Covalent Benzoxazine/Organic Frameworks for CO2 Uptake and Supercapacitors Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-06-27
繳交日期
Date of Submission
2019-07-16
關鍵字
Keywords
共價有機骨架,共價苯並惡嗪骨架,雙孔,二氧化碳捕獲,儲能。
Covalent organic frameworks, covalent benzoxazine framework, Dual-pore, Carbon dioxide capture, Energy Storage.
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
在本論文中,我們報導了第一個共價苯並惡嗪骨架(CBF-1)製成新的雙孔和單孔共價有機骨架應用於CO2吸收和超級電容器中。首先,三官能氨基苯基三嗪(TAPT)、三官能羥基苯基三嗪(THPT)和多聚甲醛產生曼尼希反應,再藉由溶劑熱法製成共價苯並惡嗪骨架(CBF-1)。新的CBF-1經歷熱交聯固化後產生高度交聯的CBF(CCBF-1),碳化後進行KOH活化,使其轉化為氮摻雜的微孔碳(N-DMC)。經熱固化、碳化和活化後的CBF-1明顯的提高了熱性質和BET表面積。有趣的是,N-DMC表現出球形形態,具有優異的熱穩定性(高達Td5為663ºC,焦炭產率為85%),高BET表面積(高達1469 m2 g-1),孔徑為2.07 nm 。從CBF-1到CCBF-1再到N-DMC的熱轉化直接增強了CO2捕獲和電化學電容。 N-DMC分別在298和273 K時顯示出優異的CO2捕獲能力,分別為3.85和7.46 mmol / g。此外,N-DMC在電流密度為1.0 Ag-1時顯示出185 Fg-1的高電化學電容,並且在4000次循環後在20 Ag-1下具有優異的86%平均保留穩定性能。
此外,我們報告了一種方法,來研究超分子相互作用對2D COF拓撲調節的影響,作為管理其性質的新技術。我們是通過引入原始和取代的二胺單體來實現:聯苯胺(BD)和1,4-二羥基聯苯胺(DHBD)進入雙咔唑單體的骨架中。使用[C2 + C2]拓撲圖設計新的具有1D開放微孔的微孔二咔唑COF(Cz-BD和Cz-DHBD),藉由希夫鹼縮合反應成功合成四甲酰基-二咔唑作為C2節和C2鏈接基的二胺芳香族, 得到的COF具有兩種不同的拓撲結構,Cz-BD具有四孔結構的單孔,而Cz-DHBD具有帶有兩種不同孔的kagome結構;一個是六邊形,另一個是三角形。這些COF具有高結晶度,水溶性和有機溶劑穩定性,大表面積和高孔隙率,具有開放的一維(1D)微孔通道和密集排列的π-陣列結晶層。這些COF表現出協同的結構效應並實現了超高性能的CO2吸收。
Abstract
In this thesis, we report the first covalent benzoxazine framework (CBF-1) in addition to new dual-pore and single-pore Covalent organic frameworks and their application for CO2 uptake and supercapacitor. First, Covalent benzoxazine framework (CBF-1) was synthesized via a solvothermal method using trifunctional aminophenyl triazine (TAPT), and trifunctional hydroxyphenyl triazine (THPT) paraformaldehyde through Mannich condensation reaction. This new CBF-1 underwent thermal cross-linked curing to generate a highly cross-linked CBF (CCBF-1), which, with carbonization followed by KOH activation, was converted into nitrogen-doped microporous carbon (N-DMC). The thermal curing, carbonization, and activation for CBF-1 have dramatically enhanced the thermal properties and BET surface area. Interestingly, the formed N-DMC exhibited a spherical morphology with excellent thermal stability (up to Td5 of 663 ºC and char yield of 85%), high BET surface areas (up to 1469 m2 g-1), and pore size of 2.07 nm. The thermal transformation from CBF-1 to CCBF-1, then to N-DMC directly enhanced the CO2 capture and electrochemical capacitance. N-DMC showed excellent CO2 capture capacities of 3.85 and 7.46 mmol/g at 298 and 273 K, respectively. Moreover, N-DMC showed high electrochemical capacitance of 185 Fg-1 at current density 1.0 Ag-1, and excellent stability performance of 86% average retention at 20 Ag-1 after 4000 cycles.
In addition, we report a conceptual strategy to study the effect of supramolecular interactions on the topological regulating of 2D COFs as a new technique to manage their properties. Our strategy was achieved by introducing pristine and substituted diamines monomers; Benzidine (BD) and 1,4-dihydroxybenzidine (DHBD) into the skeleton of bicarbazole monomer. The newly designed microporous bicarbazole COFs (Cz-BD and Cz-DHBD) with 1D open micropores were designed using a [C2 + C2] topology diagram and successfully synthesized via a Schiff-base condensation reaction of tetraformyl-bicarbazole as C2 knot and aromatic diamines as C2 linker. The resulting COFs have two different topologies, Cz-BD bears a single-pore with tetragonal structure, while Cz-DHBD has a kagome structure bearing two different kinds of pores; one is hexagonal and the other is triangular. These COFs feature high crystallinity, aqueous and organic and solvents stability, large surface area and high porosity with open one-dimensional (1D) microporous channels and densely aligned π-arrays of crystalline sheets. These COFs exhibited synergistic structural effects and achieved ultrahigh-performance of CO2 uptake.
目次 Table of Contents
Table of Contents
Thesis Verification Letter ………………………………...………………..……..…….……i
抽象 Abstract (in Chinese) …………..………………..……….……………….…………...ii
Abstract (in English)……..…………………………………………….….………….….….iii
Table of Contents…………………………………..………………….….………….…..…..v
Scheme Captions……………………………………………………………………….....…ix
Table Captions……...………………………………………………………….….………....x
Figure Captions……………………………………………………………..…….……...….xi
Chapter 1: Introduction ………………………………………………...………………..… 1
1.1 Covalent Organic Framework …………………………………………......……….……. 1
1.2 Topological Design of Frameworks ………………………………...…..…………….......2
1.3 Classification of COFs …………………………………………………...………...……. 3
1.3.1 Boron-containing COFs………………………………………..……………… 3
1.3.2 Triazine-based COFs (CTFs) ……………………………...………...…………5
1.3.3 Imide-linked COFs……………………………………..…………...……….... 8
1.3.4 Imine-linked COFs…………………………………….…………..…..……...10
1.4 Schiff-Base Chemistry………………………………………..…………………..……...11
1.4.1 Formation process………………………………….………………..………..11
1.4.2 Effect of Hydrogen bonding………………………….…………...…………..11
1.4.3 Regulating the size and shape of pores in 2D-COFs………..………….……..14
1.5 References………………………………………………………………………………..16
Chapter 2: Covalent Benzoxazine Framework Based on Triazine Unit and Its Conversion to N-doped Microporous Carbon for CO2 Uptake and Supercapacitor……………………………………………………………………….….…..21
Abstract …………………………………………………………………………….………..22
2.1 Introduction…………………………………………………………………………..…..23
2.2 Results and Discussion…………………………………...………………………………27
2.2.1 Structure Identification……………………………………………….…………27
2.2.2 Thermal behavior of CBF-1 ……………………………………...…...……...…30
2.2.3 Thermal Stability analysis……………………………………..………....………31
2.2.4 Nitrogen Adsorption Studies…………………………………..………....………34
2.2.5 Raman Spectroscopy…………………………...…………..…...….………….…35
2.2.6 Wide angle X-ray diffraction………………..……………..……….………..…..36
2.2.7 X-ray photoelectron spectroscopy (XPS) ………………...…………………...…38
2.2.8 Electron Microscopy Imaging………..……...…………………………………..41
2.2.9 CO2 Capture ………………..……………………………………….………..…42
2.2.10 Electrochemical performance analysis………………..……………………..…45
2.3 Conclusions………………...………………..…………………...………………………51
2.4 Experimental section……...………………..…………………...………………..………51
2.4.1 Materials………………………………………………………………………….51
2.4.2 Characterization…………………………….…………………………………….51
2.4.3 Electrochemical analysis…………………...…………………………………….52
2.4.4 Synthetic Procedures………………………………………………………..…..53
2.4.4.1 Synthesis of 1,3,5-tris-(4-aminophenyl)triazine (TAPT)……………..…53
2.4.4.2 Synthesis of 2,4,6-tris(4-hydroxyphenyl)triazine (THPT)……..….....….54
2.4.4.3 Synthesis of covalent benzoxazine framework (CBF-1). ……..…......….55
2.4.4.4 Synthesis of cross-linked covalent benzoxazine framework (CBTF-1)..56
2.4.4.5 Synthesis of N-doped microporous carbon (N-DMC)…………..………57
2.5 References……………………………………………………………………………..…58
Chapter 3: Bicarbazole-Based Single and Dual-Pores Covalent Organic Framework for Carbon Dioxide Uptake…..……………………………………………………..………….72
Abstract ………………………………………………………………………….....………..73
3.1 Introduction…………………………………………………………………………..…..75
3.2 Results and Discussion…………………………………...………………………………77
3.2.1 Monomers structures confirmation …………………………………...………77
3.2.2 Elemental and Thermogravimetric analyses………………………...…....……78
3.2.3 Powder X-ray diffraction (PXRD) measurements…………………......………83
3.2.4 Modelling and Simulation ……………….………………………….....………85
3.2.5 Nitrogen Adsorption-Desorption……………………………..………..…….…89
3.2.6 CO2 Capture ………………..………………………………….....……….……91
2.3 Conclusions………………...………………..…………………...………………………92
2.4 Experimental section……………………………………………………………..……..93
3.4.1 Materials ………………………………………………….………….……...….93
3.4.2 Characterization………………………….…………………………….…….….93
3.4.3 Synthetic Procedures………………………………………………….….....…..94
3.4.3.1 Synthesis of 3,6-dibromocarbazole (Cz-2Br))………………….…….…94
3.4.3.2 Synthesis of 3,3’6,6’-tetrabromo-9,9'-bicarbazole (Cz-4Br)…...…....….95
3.4.3.3 Synthesis of 3,3’,6,6’-tetraformyl-9,9’-bicarbazole (Cz-4CHO)….....….95
3.4.3.4 Synthesis of Cz-BD…………………………………………….….…….96
3.4.3.5 Synthesis of Cz-DHBD …………………………………………………97
3.4.4 Structure Identification and analysis of monomers…………………….……….97
3.4.4.1 3,6-dibromocarbazole (Cz-2Br)………………………………..……….97
3.4.4.2 3,3’6,6’-tetrabromo-9,9'-bicarbazole (Cz-4Br)……………………..…..99
3.4.4.3 3,3’,6,6’-tetraformyl-9,9’-biarbazole (Cz-4CHO)…………..……..….100
3.4.4.4 Benzidine (BD) …………………………………………………...…..102
3.4.4.5 1,4-dihydroxybenzidine (DHBD)………………………………….…..104
3.5 References……………………………………..…………………………..…...…..…107
Chapter 4: Conclusions………………………………………………………...………….111
參考文獻 References
Chapter I
(1) Steed, J. W.; Atwood, J. L.; Gale, P. A. Definition and Emergence of Supramolecular ChemistryAdapted in Part from Supramolecular Chemistry , J. W. Steed and J. L. Atwood, Wiley: Chichester, 2nd Ed., 2009.; 2012.
(2) Cote, A. P.; Keeffe, M. O.; Ockwig, N. W.; Matzger, A. J.; Yaghi, O. M. Porous , Crystalline , Covalent Organic Frameworks. Science (80-. ). 2005, 310 (November), 1166–1171.
(3) Feng, X.; Ding, X.; Jiang, D. Covalent Organic Frameworks. Chem. Soc. Rev. 2012, 41 (18), 6010–6022.
(4) Segura, J. L.; Mancheño, M. J.; Zamora, F. Covalent Organic Frameworks Based on Schiff-Base Chemistry: Synthesis, Properties and Potential Applications. Chem. Soc. Rev. 2016, 45 (20), 5635–5671.
(5) Ding, S. Y.; Wang, W. Covalent Organic Frameworks (COFs): From Design to Applications. Chem. Soc. Rev. 2013, 42 (2), 548–568.
(6) Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of Covalent Organic Frameworks. Acc. Chem. Res. 2015, 48 (12), 3053–3063.
(7) Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1 (10), 16068.
(8) Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131 (25), 8875–8883.
(9) Huang, N.; Ding, X.; Kim, J.; Ihee, H.; Jiang, D. A Photoresponsive Smart Covalent Organic Framework. Angew. Chem. Int. Ed. Engl. 2015, 54 (30), 8704–8707.
(10) Lanni, L. M.; Tilford, R. W.; Bharathy, M.; Lavigne, J. J. Enhanced Hydrolytic Stability of Self-Assembling Alkylated Two-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2011, 133 (35), 13975–13983.
(11) Li, Y.; Yang, R. T. Hydrogen Storage in Metal-Organic and Covalent-Organic Frameworks by Spillover. Am. Inst. Chem. Eng. AIChE J 2007, 54, 269–279.
(12) Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P.; Yaghi, O. M.; Côté, A. P.; Yaghi, O. M. Reticular Synthesis of Covalent Organic Borosilicate Frameworks. J. Am. Chem. Soc. 2008, 130 (36), 11872–11873.
(13) Zhao, W.; Xia, L.; Liu, X. Covalent Organic Frameworks (COFs): Perspectives of Industrialization. CrystEngComm 2018, 20 (12), 1613–1634.
(14) Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angew. Chemie Int. Ed. 2008, 47 (18), 3450–3453.
(15) Chan-Thaw, C. E.; Villa, A.; Katekomol, P.; Su, D.; Thomas, A.; Prati, L. Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Lett. 2010, 10 (2), 537–541.
(16) Chan-Thaw, C. E.; Villa, A.; Prati, L.; Thomas, A. Triazine-Based Polymer/Nano-Pd: Oxidation of Alcohols. Synfacts 2011, 2011 (04), 0457–0457.
(17) Wang, K.; Yang, L.-M.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach. Angew. Chemie Int. Ed. 2017, 56 (45), 14149–14153.
(18) Bhanja, P.; Bhunia, K.; Das, S. K.; Pradhan, D.; Kimura, R.; Hijikata, Y.; Irle, S.; Bhaumik, A. A New Triazine-Based Covalent Organic Framework for High-Performance Capacitive Energy Storage. ChemSusChem 2017, 10 (5), 921–929.
(19) Xue, R.; Guo, H.; Wang, T.; Wang, X.; Ai, J.; Yue, L.; Wei, Y.; Yang, W. Synthesis and Characterization of a New Covalent Organic Framework Linked by –NH– Linkage. Mater. Lett. 2017, 209, 171–174.
(20) Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed Synthesis of Large-Pore Crystalline Polyimide Covalent Organic Frameworks. Nat. Commun. 2014, 5 (1), 4503.
(21) Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. J. Am. Chem. Soc. 2015, 137 (26), 8352–8355.
(22) Zhang, C.; Zhang, S.; Yan, Y.; Xia, F.; Huang, A.; Xian, Y. Highly Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for the Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces 2017, 9 (15), 13415–13421.
(23) Wang, T.; Xue, R.; Chen, H.; Shi, P.; Lei, X.; Wei, Y.; Guo, H.; Yang, W. Preparation of Two New Polyimide Bond Linked Porous Covalent Organic Frameworks and Their Fluorescence Sensing Application for Sensitive and Selective Determination of Fe 3+. New J. Chem. 2017, 41 (23), 14272–14278.
(24) Luo, W.; Zhu, Y.; Zhang, J.; He, J.; Chi, Z.; Miller, P. W.; Chen, L.; Su, C.-Y. A Dynamic Covalent Imine Gel as a Luminescent Sensor. Chem. Commun. 2014, 50 (80), 11942–11945.
(25) Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Template-Directed Synthesis Employing Reversible Imine Bond Formation. Chem. Soc. Rev. 2007, 36 (11), 1705.
(26) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klöck, C.; O’Keeffe, M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc. 2009, 131 (13), 4570–4571.
(27) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages. J. Am. Chem. Soc. 2011, 133 (30), 11478–11481.
(28) Du, Y.; Calabro, D.; Wooler, B.; Kortunov, P.; Li, Q.; Cundy, S.; Mao, K. One Step Facile Synthesis of Amine-Functionalized COF-1 with Enhanced Hydrostability. Chem. Mater. 2015, 27 (5), 1445–1447.
(29) Thote, J.; Barike Aiyappa, H.; Rahul Kumar, R.; Kandambeth, S.; Biswal, B. P.; Balaji Shinde, D.; Chaki Roy, N.; Banerjee, R. Constructing Covalent Organic Frameworks in Water
via Dynamic Covalent Bonding. IUCrJ 2016, 3 (6), 402–407.
(30) Mullangi, D.; Nandi, S.; Shalini, S.; Sreedhala, S.; Vinod, C. P.; Vaidhyanathan, R. Pd Loaded Amphiphilic COF as Catalyst for Multi-Fold Heck Reactions, C-C Couplings and CO Oxidation. Sci. Rep. 2015, 5 (1), 10876.
(31) Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical Sensing in Two Dimensional Porous Covalent Organic Nanosheets. Chem. Sci. 2015, 6 (7), 3931–3939.
(32) Zhuang, X.; Zhang, F.; Wu, D.; Feng, X. Graphene Coupled Schiff-Base Porous Polymers: Towards Nitrogen-Enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity. Adv. Mater. 2014, 26 (19), 3081–3086.
(33) Shinde, D. B.; Kandambeth, S.; Pachfule, P.; Kumar, R. R.; Banerjee, R. Bifunctional Covalent Organic Frameworks with Two Dimensional Organocatalytic Micropores. Chem. Commun. 2015, 51 (2), 310–313.
(34) Chen, X.; Addicoat, M.; Jin, E.; Zhai, L.; Xu, H.; Huang, N.; Guo, Z.; Liu, L.; Irle, S.; Jiang, D. Locking Covalent Organic Frameworks with Hydrogen Bonds: General and Remarkable Effects on Crystalline Structure, Physical Properties, and Photochemical Activity. J. Am. Chem. Soc. 2015, 137 (9), 3241–3247.
(35) Kandambeth, S.; Shinde, D. B.; Panda, M. K.; Lukose, B.; Heine, T.; Banerjee, R. Enhancement of Chemical Stability and Crystallinity in Porphyrin-Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angew. Chemie Int. Ed. 2013, 52 (49), 13052–13056.
(36) Kahveci, Z.; Islamoglu, T.; Shar, G. A.; Ding, R.; El-Kaderi, H. M. Targeted Synthesis of a Mesoporous Triptycene-Derived Covalent Organic Framework. CrystEngComm 2013, 15 (8), 1524–1527.
(37) Lukose, B.; Kuc, A.; Heine, T. The Structure of Layered Covalent-Organic Frameworks.
Chem. - A Eur. J. 2011, 17 (8), 2388–2392.
(38) Xiang, Z.; Cao, D.; Dai, L. Well-Defined Two Dimensional Covalent Organic Polymers: Rational Design, Controlled Syntheses, and Potential Applications. Polym. Chem. 2015, 6 (11), 1896–1911.
(39) Tilford, R. W.; Mugavero, S. J.; Pellechia, P. J.; Lavigne, J. J. Tailoring Microporosity in Covalent Organic Frameworks. Adv. Mater. 2008, 20 (14), 2741–2746.
(40) Spitler, E. L.; Koo, B. T.; Novotney, J. L.; Colson, J. W.; Uribe-Romo, F. J.; Gutierrez, G. D.; Clancy, P.; Dichtel, W. R. A 2D Covalent Organic Framework with 4.7-Nm Pores and Insight into Its Interlayer Stacking. J. Am. Chem. Soc. 2011, 133 (48), 19416–19421.
(41) Dalapati, S.; Addicoat, M.; Jin, S.; Sakurai, T.; Gao, J.; Xu, H.; Irle, S.; Seki, S.; Jiang, D. Rational Design of Crystalline Supermicroporous Covalent Organic Frameworks with Triangular Topologies. Nat. Commun. 2015, 6 (1), 7786.
(42) Zhou, T.; Xu, S.; Wen, Q.; Pang, Z.; Zhao, X. One-Step Construction of Two Di Ff Erent Kinds of Pores in a 2D Covalent Organic Framework. J. Am. Chem. Soc. 2014, 136, 15885–15888.

Chapter II

(1) Ishida, H. Handbook of polybenzoxazine resins, ed. H. Ishida and T. Agag, Elsevier, Amsterdam, 2011.
(2) Froimowicz, P.; Han, L.; Graf, R. Ishida, H.; Arza, C. R. Design, Synthesis, Characterization, and Polymerization of Fused-Ring Naphthoxazine Resins. Macromolecules 2017, 50, 9249-9256.
(3) Wang, M. W.; Jeng, R. J.; Lin, C. H. Study on the Ring-Opening Polymerization of Benzoxazine through Multisubstituted Polybenzoxazine Precursors. Macromolecules 2015, 48, 530–535.
(4) Kaya, G.; Kiskan, B.; Yagci, Y. Phenolic Naphthoxazines as Curing Promoters for Benzoxazines. Macromolecules 2018, 51, 1688–1695.
(5) Zhang, K.; Han, L.; Froimowicz, P.; Ishida, H. A Smart Latent Catalyst Containing o-Trifluoroacetamide Functional Benzoxazine: Precursor for Low-Temperature Formation of Very High Performance Polybenzoxazole with Low Dielectric Constant and High Thermal Stability. Macromolecules 2017, 50, 6552–6560.
(6) Ning, X.; Ishida, H. Phenolic Materials via Ring-Opening Polymerization: Synthesis and Characterization of Bisphenol-A Based Benzoxazines and Their Polymers. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 1121–1129.
(7) Agag, T.; Takeichi, T. Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High-Performance Thermosets. Macromolecules 2003, 36, 6010–6017.
(8) Hu, W. H.; Huang, K. W.; Kuo, S. W. Heteronucleobase-functionalized benzoxazine: synthesis, thermal properties, and self-assembled structure formed through multiple hydrogen bonding interactions. Polym. Chem. 2012, 3, 1546-1554.
(9) Lin, R. C.; Kuo, S. W. Benzoxazine/Triphenylamine‐Based Dendrimers Prepared through Facile One‐Pot Mannich Condensations. Macromol. Rapid Commun. 2017, 38, 1700251.
(10) Chen, C. H.; Lin, C. H.; Wong, T. I.; Wang, M. W.; Juang, T. Y. Thermosets derived from
diallyl-containing main-chain type benzoxazine polymers. Polymer 2018, 149, 286-293.
(11) Demir, K. D.; Kiskan, B.; Yagci, Y. Thermally Curable Acetylene-Containing Main-Chain Benzoxazine Polymers via Sonogashira Coupling Reaction. Macromolecules 2011, 44, 1801–1807
(12) Zhang, K.; Yu, X. Catalyst-Free and Low-Temperature Terpolymerization in a Single-Component Benzoxazine Resin Containing Both Norbornene and Acetylene Functionalities. Macromolecules 2018, 51, 6524–6533.
(13) Liao, Y. T.; Lin, Y. C.; Kuo, S. W. Highly Thermally Stable, Transparent, and Flexible Polybenzoxazine Nanocomposites by Combination of Double-Decker-Shaped Polyhedral Silsesquioxanes and Polydimethylsiloxane” Macromolecules 2017, 50, 5739-5747.
(14) El-Mahdy, A. F. M.; Kuo, S. W. Direct synthesis of poly(benzoxazine imide) from an ortho-benzoxazine: its thermal conversion to highly cross-linked polybenzoxazole and blending with poly(4-vinylphenol). Polym. Chem. 2018, 9, 1815-1826.
(15) Wang, C. F.; Su, Y. C.; Kuo, S. W.; Huang, C. F.; Sheen, Y. C.; Chang, F. C. Low-Surface-Free-Energy Materials Based on Polybenzoxazines” Angew. Chem. In. Ed. 2006, 45, 2248-2251.
(16) Kuo, S. W.; Wu, Y. C.; Wang, C. F.; Jeong, K. U. Preparation Low Surface Energy Polymer Materials by Minimizing Intermolecular Hydrogen Bonding Interaction. J. Phys. Chem. C 2009, 113, 20666-20673.
(17) Liu, H. C.; Su, W. C.; Liu, Y. L. Self-assembled benzoxazine-bridged polysilsesquioxanes exhibiting ultralow-dielectric constants and yellow-light photoluminescent emission. J. Mater. Chem. 2011, 21, 7182-7187.
(18) Arslan, M.; Kiskan, B.; Yagci, Y. Benzoxazine-Based Thermosets with Autonomous Self-Healing Ability. Macromolecules 2015, 48 , 1329–1334
(19) Zhang, S.; Ran, Q.; Fu, Q.; Gu, Y. Preparation of Transparent and Flexible Shape Memory Polybenzoxazine Film through Chemical Structure Manipulation and Hydrogen Bonding
Control. Macromolecules 2018, 51, 6561–6570.
(20) Zhou, C.; Tao, M.; Liu, J.; Liu, T.; Lu, X.; Xin, Z. Effects of Interfacial Interaction on Corrosion Resistance of Polybenzoxazine/SiO2 Nanocomposite Coatings. ACS Appl. Polym. Mater. 2019, 1, 381–391.
(21) Arslan, M.; Kiskan, B.; Yagci, Y.; Arslan, M.; Kiskan, B.; Yagci, Y. Ring-Opening Polymerization of 1,3-Benzoxazines via Borane Catalyst. Polymers 2018, 10, 239.
(22) Mohamed, M.; Kuo, S.-W. Polybenzoxazine/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites. Polymers 2016, 8, 225.
(23) Ghosh, N. N.; Kiskan, B.; Yagci, Y. Polybenzoxazines—New High Performance Thermosetting Resins: Synthesis and Properties. Prog. Polym. Sci. 2007, 32, 1344–1391.
(24) Yang, C. C.; Lin, Y. C.; Wang, P. I.; Liaw, D. J.; Kuo, S. W. Polybenzoxazine/single-walled carbon nanotube nanocomposites stabilized through noncovalent bonding interactions. Polymer 2014, 55, 2044-2050.
(25) Mohamed, M. G.; Hsu, K. C.; Kuo, S. W. Bifunctional polybenzoxazine nanocomposites containing photo-crosslinkable coumarin units and pyrene units capable of dispersing single-walled carbon nanotubes” Polym. Chem. 2015, 6, 2423-2433.
(26) Araz, C. R.; Ishida, H.; Maurer, F. H. Quantifying Dispersion in Graphene Oxide/Reactive Benzoxazine Monomer Nanocomposites. Macromolecules 2014, 47, 3685–3692.
(27) Zeng M.; Wang, J.; Li, R.; Liu, J.; Chen, W.; Xu, Q.; Gu, Y. The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites. Polymer 2013, 54, 3017-3116.
(28) Meng, F.; Ishida, H.; Liu, X. Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adv., 2014, 4, 9471-9475 .
(29) Wang, S. Li, W. C.; Hao, G. P.; Han, Y.; Sun, Q.; Zhang, X. Q.; Lu, A. H. Temperature-Programmed Precise Control over the Sizes of Carbon Nanospheres Based on Benzoxazine
Chemistry. J. Am. Chem. Soc. 2011, 133, 15304–15307.
(30) Hao, G. P.; Li, W. C.; Qian, D.; Wang, G. H.; Zhang, W. P.; Zhang, T.; Wang, A. Q.; Schuth, F.; Bongard, H. J.; Lu, A. H. Structurally Designed Synthesis of Mechanically Stable Poly(benzoxazine-co-resol)-Based Porous Carbon Monoliths and Their Application as High-Performance CO2 Capture Sorbents. J. Am. Chem. Soc. 2011, 133, 11378–11388.
(31) Zhao, J.; Gilani, M. R. H. S.; Lai, J.; Nsabimana, A.; Liu, Z.; Luque, R.; Xu, G. Autocatalysis Synthesis of Poly(benzoxazine-co-resol)-Based Polymer and Carbon Spheres. Macromolecules 2018, 51, 5494–5500.
(32) Wickramaratne, N. P.; Xu, J.; Wang, M.; Zhu, L.; Dai, L.; Jaroniec, M. Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. Chem. Mater. 2014, 26, 2820-2828.
(33) Zhang, M.; Chen, M.; Reddeppa, N.; Xu, D.; Jing, Q.; Zhang, R. Nitrogen self-doped carbon aerogels derived from trifunctional benzoxazine monomers as ultralightsupercapacitor electrodes Nanoscale 2018, 10, 6549–6557.
(34) Gu, S.; Li, Z.; Miyoshib, T.; Jana, S. Polybenzoxazine aerogels with controllable pore structures. RSC Adv. 2015, 5, 26801–26805.
(35) Wan, L.; Wang, J.; Sun, Y.; Feng, C.; Li, K. Polybenzoxazine-based nitrogen-containing porous carbons for high-performance supercapacitor electrodes and carbon dioxide capture. RSC Adv. 2015, 5, 5331–5342
(36) Wan, L.; Wang, J.; Feng, C.; Sun, Y.; Li, K. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture. Nanoscale 2015, 7, 6534–6544.
(37) Wang, S.; Li, W. C.; Zhang, L.; Jin, Z. Y; Lu, A. H. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO2 adsorption properties. J. Mater. Chem. A 2014, 2, 4406–4412.
(38) Guo, D. C.; Mi, J.; Hao, G. P.; Dong, W.; Xiong, G.; Li, W. C. Lu, A. H. Ionic liquid
C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ. Sci. 2013, 6, 652–659.
(39) Wang, P.; Zhang, G.; Li, Z.; Sheng, W.; Zhang, Y.; Gu, J.; Zheng, X.; Cao, F. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources. ACS Appl. Mater. Interfaces 2016, 8, 26908−26915.
(40) Thirukumaran, P.; Atchudan, R.; Parveen, A. S.; Lee, Y. R.; Kim, S. C. Polybenzoxazine originated N-doped mesoporous carbon ropes as an electrode material for high-performance supercapacitors. J. Alloys and Compounds 2018, 750, 384-391.
(41) Wan, L.; Du, C.; Yang, S. Synthesis of graphene oxide/polybenzoxazine-based nitrogen-containing porous carbon nanocomposite for enhanced supercapacitor properties. Electrochimica Acta 2017, 251, 12
(42) Demir, M.; Tessema, T.-D.; Farghaly, A. A.; Nyankson, E.; Saraswat, S. K.; Aksoy, B.; Islamoglu, T.; Collinson, M. M.; El-Kaderi, H. M.; Gupta, R. B. Lignin-Derived Heteroatom-Doped Porous Carbons for Supercapacitor and CO 2 Capture Applications. Int. J. Energy Res. 2018, 42, 2686–2700.
(43) Zhao, R.; Jin, Z.; Wang, J.; Zhang, G.; Zhang, D.; Sun, Y.; Guan, T.; Zhao, J.; Li, K. Adsorptive Desulfurization of Model Fuel by S, N-Codoped Porous Carbons Based on Polybenzoxazine. Fuel 2018, 218, 258–265.
(44) Thirukumaran, P.; Atchudan, R.; Balasubramanian, R.; Parveen, A. S.; Kim, S.-C. Direct Synthesis of Nitrogen-Rich Carbon Sheets via Polybenzoxazine as Highly Active Electrocatalyst for Water Splitting. Int. J. Hydrogen Energy 2018, 43, 13266–13275.
(45) Peng, C.; Gao, C.; Yuan, Y.; Wu, Z.; zhou, D. Synthesis and Application of a Benzoxazine-Type Phosphorus-Containing Monomer on Epoxy/Benzoxazine Copolymer: Thermal Stability and Compatibility with Liquid Oxygen. Polym. Degrad. Stab. 2018, 157, 131–142.
(46) Demir, M.; Farghaly, A. A.; Decuir, M. J.; Collinson, M. M.; Gupta, R. B. Supercapacitance and Oxygen Reduction Characteristics of Sulfur Self-Doped Micro/Mesoporous Bio-Carbon Derived from Lignin. Mater. Chem. Phys. 2018, 216, 508–516.
(47) Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-Based Design and Emerging Applications of Nanoporous Carbon Spheres. Nat. Mater. 2015, 14, 763–774.
(48) Su, Y.; Shi, W.; Chen, X.; Zhao, S.; Hui, Y.; Xie, Z. An Aggregation-Induced Emission Enhancement Fluorescent Benzoxazine-Derived Macromolecule: Catalyst-Free Synthesis and Its Preliminary Application for the Determination of Aqueous Picric Acid. RSC Adv. 2016, 6 , 41340–41347.
(49) Liu, L.; Xie, Z. H.; Deng, Q. F.; Hou, X. X.; Yuan, Z. Y. One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO 2 capture. J. Mater. Chem. A 2017, 5, 418-425.
(50) Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption. Chem. Mater. 2005, 17, 5187-5193.
(51) Cui, X.; Yang, Q.; Xiong, Y.; Bao, Z.; Xing, H.; Dai, S. Preparation of ordered N-doped mesoporous carbon materials via a polymer–ionic liquid assembly. Chem. Commun. 2017, 53, 4915-4918.
(52) Kou, J.; Sun L. B. Nitrogen-Doped Porous Carbons Derived from Carbonization of a Nitrogen-Containing Polymer: Efficient Adsorbents for Selective CO2 Capture. Ind. Eng. Chem. Res. 2016, 55, 10916–10925.
(53) Chen, Y. Z.; Cai, C.; Wang, Y.; Xu, Q.; Yu, S. H.; Jiang, H. L. Palladium nanoparticles stabilized with N-doped porous carbons derived from metal–organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability. Green Chem. 2016, 18, 1212-1217.
(54) Wang, Y.; Fugetsu, B.; Wang, Z.; Gong, W.; Sakata, I.; Morimoto, S.; Hashimoto, Y.; Endo, M.;
Dresslhaus, M.; Torrenes, M. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci. Rep. 2017, 7, 40259.
(55) Zhang, X.; Ma, L.; Gan, M.; Fu, G.; Jin, M.; Lei, Y.; Yang, P.; Yan, M. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors. J. Power Source, 2017, 340, 22-31.
(56) To, J. W. F.; He, J.; Mei, J.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S.; Bae, W. G.; Pan, L.; Tok, J. B. H.; Wilcox, J.; Bao, Z. Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.
(57) Alabadi, A. Abbood, H. A.; Li, Q.; Jing, N. Tan, B. Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture. Sci Rep. 2016, 6, 38614.
(58) Xu, D.; Chen, C.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y.; Zhang, L. A hierarchical N/S‐codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high‐performance sodium‐ion batteries. Adv. Energy Mater. 2016, 6, 1501929.
(59) Wan, L.; Wang, L.; Xie, L.; Sun, Y.; Li, K. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 15583-15596.
(60) Wu, J. Y.; Mohamed, M. G.; Kuo, S. W. Directly synthesized nitrogen-doped microporous carbons from polybenzoxazine resins for carbon dioxide capture. Polym. Chem. 2017, 8, 5481-5489.
(61) Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Supercapacitive Energy Storage and Electric Power Supply Using an Aza‐Fused π‐Conjugated Microporous Framework. 2011, 50, Angew. Chem. Int. Ed. 2011, 50, 8753– 8757.
(62) Hao, L.; Ning, J.; Luo, B.; Wang, B.; Zhang, Y.; Tang, Z.; Yang, J.; Thomas, A.; Zhi, L.
Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 2015, 137, 219– 225.
(63) Li, W.-H.; Ding, K.; Tian, H.-R.; Yao, M.-S.; Nath, B., Deng; W.-H.; Wang, Y.; Xu, G. Conductive Metal–Organic Framework Nanowire Array Electrodes for High‐Performance Solid‐State Supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.
(64) Wan S.; Guo J.; Kim J.; Ihee H.; Jiang D. A Photoconductive Covalent Organic Framework: Self‐Condensed Arene Cubes Composed of Eclipsed 2D Polypyrene Sheets for Photocurrent Generation. Angew. Chem., Int. Ed., 2009, 48, 5439-5442.
(65) Zhuang, X.; Zhang, F.; Wu, D.; Forler, N.; Liang, H.; Wagner, M.; Gehrig, D.; Hansen, M. R.; Laquai, F.; Feng, X. Two‐Dimensional Sandwich‐Type, Graphene‐Based Conjugated Microporous Polymers. Angew. Chem., Int. Ed. 2013, 52, 9668-9672.
(66) Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010-6022.
(67) Kuhn, P.; Thomas, A.; Antonietti, M. Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles. Macromolecules 2008, 42, 319-326.
(68) Zhuang, X.; Zhang, F.; Wu, D.; Feng, X. Graphene Coupled Schiff‐base Porous Polymers: Towards Nitrogen‐enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity. Adv. Mater. 2014, 26, 3081-3086.
(69) EL-Mahdy, A. F. M.; Kuo, C-H.; Alshehri, A.; Young, C.; Yamauchi, Y.; Kim, J.; Kuo, S-W. Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. J. Mater. Chem. A, 2018, 6, 19532-19541.
(70) EL-Mahdy, A. F. M.; Young, C.; Kim, J.; You, J.; Yamauchi, Y.; Kuo, S-W. Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and
Their Gas and Energy Storage Applications. ACS Appl. Mater. Interfaces, 2019, 11(9), 9343-9354.
(71) El-Mahdy, A. F. M.; Hung, Y. H.; Mansoure, T. H.; Yu, H. H.; Chen T.; Kuo. S.W. A Hollow Microtubular Triazine- and Benzobisoxazole-Based Covalent Organic Framework Presenting Sponge-Like Shells That Functions as a High-Performance Supercapacitor. Chemistry – An Asian Journal, 2019, https://doi.org/10.1002/asia.201900296.
(72) Baqar, M.; Agag, T.; Huang, R.; Maia, J.; Qutubuddin, S.; Ishida, H. Mechanistic Pathways for the Polymerization of Methylol-Functional Benzoxazine Monomers. Macromolecules 2012, 45, 8119–8125.
(73) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87.
(74) (43) Liao, C. S.; Wu, J. S.; Wang, C. F.; Chang, F. C. Modification of Polymer Substrates with Low Surface Free Energy Material by Low-Temperature Cured Polybenzoxazine. Macromol. Rapid Commun. 2008, 29, 52–56.
(75) Hao, G.-P.; Li, W.-C.; Qian, D.; Lu, A.-H. Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2 Capture. Adv. Mater. 2010, 22, 853–857.
(76) Sun, L.; Tian, C.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H. Nitrogen-Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chem. Eur. J. 2014, 20, 564-574.
(77) Zhou, J.; Li, W.; Zhang, Z.; Xing, W.; Zhuo, S. Carbon Dioxide Adsorption Performance of N-Doped Zeolite Y Templated Carbons. RSC Adv. 2012, 2, 161–167.
(78) Sevilla, M.; Parra, J. B.; Fuertes, A. B. Assessment of the Role of Micropore Size and N-Doping in CO2 Capture by Porous Carbons. ACS Appl. Mater. Interfaces 2013, 5, 6360–6368.
(79) Jin, L.; Agag, T.; Ishida, H. Bis(Benzoxazine-Maleimide)s as a Novel Class of High Performance Resin: Synthesis and Properties. Eur. Polym. J. 2010, 46, 354–363.
(80) Park, M.-S.; Jeong, B. O.; Kim, T. J.; Kim, S.; Kim, K. J.; Yu, J.-S.; Jung, Y.; Kim, Y.-J. Disordered Mesoporous Carbon as Polysulfide Reservoir for Improved Cyclic Performance of Lithium-sulfur Batteries. Carbon 2014, 68, 265–272.
(81) Xing, W.; Liu, C.; Zhou, Z.; Zhang, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Gao, H.; Wang, G.; Qiao, S. Z. Superior CO2 Uptake of N-Doped Activated Carbon through Hydrogen-Bonding Interaction. Energy Environ. Sci. 2012, 5, 7323-7327.
(82) Wu, Q.; Zhang, G.; Gao, M.; Huang, L.; Li, L.; Liu, S.; Xie, C.; Zhang, Y.; Yu, S. N-Doped Porous Carbon from Different Nitrogen Sources for High-Performance Supercapacitors and CO2 Adsorption. J. Alloys Compd. 2019, 786, 826–838.
(83) Arenillas, A.; Smith, K. M.; Drage, T. C.; Snape, C. E. CO2 Capture Using Some Fly Ash-Derived Carbon Materials. Fuel 2005, 84, 2204–2210.
(84) Wu, Z.; Webley, P. A.; Zhao, D. Post-Enrichment of Nitrogen in Soft-Templated Ordered Mesoporous Carbon Materials for Highly Efficient Phenol Removal and CO2 Capture. J. Mater. Chem. 2012, 22, 11379-11389.
(85) Pevida, C.; Drage, T. C.; Snape, C. E. Silica-Templated Melamine–formaldehyde Resin Derived Adsorbents for CO2 Capture. Carbon 2008, 46, 1464–1474.
(86) Yu, M.; Li, J.; Wang, L. KOH-Activated Carbon Aerogels Derived from Sodium Carboxymethyl Cellulose for High-Performance Supercapacitors and Dye Adsorption. Chem. Eng. J. 2017, 310, 300–306
(87) Yu, L.; Hu, L.; Anasori, B.; Liu, Y.-T.; Zhu, Q.; Zhang, P.; Gogotsi, Y.; Xu, B. MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603.
(88) Liu, H.; Song, H.; Chen, X.; Zhang, S.; Zhou, J.; Ma, Z. Effects of Nitrogen- and Oxygen-Containing Functional Groups of Activated Carbon Nanotubes on the Electrochemical Performance in Supercapacitors. J. Power Sources 2015, 285, 303–309.
(89) Li, B.; Dai, F.; Xiao, Q.; Yang, L.; Shen, J.; Zhang, C.; Cai, M. Nitrogen-Doped Activated Carbon for a High Energy Hybrid Supercapacitor. Energy Environ. Sci. 2016, 9, 102–106.
(90) Zhang, J. M.; Hua, Q.; Li, J.; Yuan, J.; Peijs, T.; Dai, Z.; Zhang, Y.; Zheng, Z.; Zheng, L.; Tang, J. Cellulose-Derived Highly Porous Three-Dimensional Activated Carbons for Supercapacitors. ACS Omega 2018, 3, 14933–14941.
(91) Wang, J.-G.; Liu, H.; Sun, H.; Hua, W.; Wang, H.; Liu, X.; Wei, B. One-Pot Synthesis of Nitrogen-Doped Ordered Mesoporous Carbon Spheres for High-Rate and Long-Cycle Life Supercapacitors. Carbon 2018, 127, 85–92.
(92) Tian, W.; Zhang, H.; Sun, H.; Tadé, M. O.; Wang, S. Template-Free Synthesis of N-Doped Carbon with Pillared-Layered Pores as Bifunctional Materials for Supercapacitor and Environmental Applications. Carbon 2017, 118, 98–105.
(93) Kim, M.-H.; Kim, K.-B.; Park, S.-M.; Roh, K. C. Hierarchically Structured Activated Carbon for Ultracapacitors. Sci. Rep. 2016, 6, 21182.
(94) Ramesh, T.; Rajalakshmi, N.; Dhathathreyan, K. S.; Reddy, L. R. G. Hierarchical Porous Carbon Microfibers Derived from Tamarind Seed Coat for High-Energy Supercapacitor Application. ACS Omega 2018, 3, 12832–12840.
(95) Farzana, R.; Rajarao, R.; Bhat, B. R.; Sahajwalla, V. Performance of an Activated Carbon Supercapacitor Electrode Synthesised from Waste Compact Discs (CDs). J. Ind. Eng. Chem. 2018, 65, 387–396.
(96) Abioye, A. M.; Ani, F. N. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renew. Sustain. Energy Rev. 2015, 52, 1282–1293.
(97) Wang, D.; Fang, G.; Xue, T.; Ma, J.; Geng, G. A Melt Route for the Synthesis of Activated Carbon Derived from Carton Box for High Performance Symmetric Supercapacitor Applications. J. Power Sources 2016, 307, 401–409.
(98) Zhou, X.; Chen, Q.; Wang, A.; Xu, J.; Wu, S.; Shen, J. Bamboo-like Composites of V2O5 /Polyindole and Activated Carbon Cloth as Electrodes for All-Solid-State Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3776–3783.
(99) Ahmed, M. M. M.; Imae, T.; Hill, J. P.; Yamauchi, Y.; Ariga, K.; Shrestha, L. K. Defect-Free Exfoliation of Graphene at Ultra-High Temperature. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 538, 127–132.
(100) Ahmed, M. M. M.; Imae, T. Electrochemical Properties of a Thermally Expanded Magnetic Graphene Composite with a Conductive Polymer. Phys. Chem. Chem. Phys. 2016, 18, 10400–10410.
(101) Gomes, R.; Bhaumik, A. A New Triazine Functionalized Luminescent Covalent Organic Framework for Nitroaromatic Sensing and CO 2 storage. RSC Adv. 2016, 6, 28047–28054.
(102) Zhang, J.; Zhang, W.; Han, M.; Pang, J., One pot synthesis of nitrogen-doped hierarchical porous carbon derived from phenolic formaldehyde resin with sodium citrate as activation agent for supercapacitors. J. Mater. Sci.: Mater. in Electron. 2018, 29 (6), 4639-4648.
(103) Saha, D.; Li, Y.; Bi, Z.; Chen, J.; Keum, J. K.; Hensley, D. K.; Grappe, H. A.; Meyer, H. M.; Dai, S.; Paranthaman, M. P.; Naskar, A. K., Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon. Langmuir 2014, 30 (3), 900-910.
(104) Qin, F.; Tian, X.; Guo, Z.; Shen, W., Asphaltene-based porous carbon nanosheet as electrode for supercapacitor. ACS Sus. Chem.& Eng. 2018, 6 (11), 15708-15719.
(105) Banda, H.; Périé, S.; Daffos, B.; Taberna, P.-L.; Dubois, L.; Crosnier, O.; Simon, P.; Lee, D.; De Paëpe, G.; Duclairoir, F., Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity. ACS Nano 2019, 13 (2), 1443-1453.
(106) Wee, B.-H.; Wu, T.-F.; Hong, J.-D., Facile and scalable synthesis method for high-quality few-layer graphene through solution-based exfoliation of graphite. ACS App. Mater. & Int. 2017, 9 (5), 4548-4557.
(107) Goldfarb, J. L.; Dou, G.; Salari, M.; Grinstaff, M. W., Biomass-Based Fuels and Activated Carbon Electrode Materials: An Integrated Approach to Green Energy Systems. ACS Sus. Chem. & Eng. 2017, 5 (4), 3046-3054.
(108) Quan, T.; Goubard-Bretesché, N.; Härk, E.; Kochovski, Z.; Mei, S.; Pinna, N.; Ballauff, M.; Lu, Y., Highly Dispersible Hexagonal Carbon–MoS2–Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors. Chem. A Europ. J. 2019, 25 (18), 4757-4766.
(109) Zhai, S.; Jiang, W.; Wei, L.; Karahan, H. E.; Yuan, Y.; Ng, A. K.; Chen, Y., All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Mater. Horizons 2015, 2 (6), 598-605.
(110) Cao, J.; Jafta, C. J.; Gong, J.; Ran, Q.; Lin, X.; Félix, R.; Wilks, R. G.; Bär, M.; Yuan, J.; Ballauff, M.; Lu, Y., Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors. ACS App. Mater. & Int. 2016, 8 (43), 29628- 29636.
(111) Park, H.; Ambade, R. B.; Noh, S. H.; Eom, W.; Koh, K. H.; Ambade, S. B.; Lee, W. J.; Kim, S. H.; Han, T. H., Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors. ACS App. Mater. & Int. 2019, 11 (9), 9011-9022.
(112) Peng, Z.; Zou, Y.; Xu, S.; Zhong, W.; Yang, W., High-Performance Biomass-Based Flexible Solid- State Supercapacitor Constructed of Pressure-Sensitive Lignin-Based and Cellulose Hydrogels. ACS App. Mater. & Int. 2018, 10 (26), 22190-22200.
(113) Yang, C.-M.; Kim, Y.-J.; Miyawaki, J.; Kim, Y. A.; Yudasaka, M.; Iijima, S.; Kaneko, K., Effect of the Size and Position of Ion-Accessible Nanoholes on the Specific Capacitance of
Single-Walled Carbon Nanohorns for Supercapacitor Applications. J. Phys. Chem. C 2015, 119 (6), 2935-2940.
(114) Oh, J. Y.; Jung, Y.; Cho, Y. S.; Choi, J.; Youk, J. H.; Fechler, N.; Yang, S. J.; Park, C. R., Metal– Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices. ChemSusChem 2017, 10 (8), 1675-1682.
(115) Stimpfling, T.; Leroux, F., Supercapacitor-Type Behavior of Carbon Composite and Replica Obtained from Hybrid Layered Double Hydroxide Active Container. Chem. Mater. 2010, 22 (3), 974-987.
(116) Lin, Y.; Chen, Z.; Yu, C.; Zhong, W., Heteroatom-Doped Sheet-Like and Hierarchical Porous Carbon Based on Natural Biomass Small Molecule Peach Gum for High-Performance Supercapacitors. ACS Sus. Chem. & Eng. 2019, 7 (3), 3389-3403.
(117) Periyasamy Thirukumaran, RajiAtchudan, AsrafaliShakila Parveen, Yong RokLee, Seong- CheolKim, Polybenzoxazine originated N-doped mesoporous carbon ropes as an electrode material for high-performance supercapacitors. J. Alloys & Comp. 2018, 750, 384-391.
(118) De-Cai Guo, Juan Mi, Guang-Ping Hao, Wei Dong, Guang Xiong, Wen-Cui Li, An-Hui Lu, Ionic liquid C16 mimBF4 assisted synthesis of poly (benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy & Environ. Sci. 2013, 6 (2), 652-659.

Chapter III

1. Cote, A. P.; Keeffe, M. O.; Ockwig, N. W.; Matzger, A. J. Yaghi, O. M. Porous , Crystalline , Covalent Organic Frameworks. Science 2005, 310, 1166-1171.
2. Diercks, C. S. Yaghi, O. M. The Atom, the Molecule, and the Covalent Organic Framework. Science 2017, 355, eaal1585.
3. Xu, H.; Gao, J.; Jiang, D. Stable, Crystalline, Porous, Covalent Organic Frameworks as a Platform for Chiral Organocatalysts. Nat. Chem. 2015, 7, 905–912.
4. EL-Mahdy, A. F. M.; Young, C.; Kim, J.; You, J.; Yamauchi, Y.; Kuo, S. W. Hollow Microspherical and Microtubular [3 + 3] Carbazole-Based Covalent Organic Frameworks and Their Gas and Energy Storage Applications. ACS Appl. Mater. Interfaces 2019, 11, 9343–9354.
5. Fan, H.; Mundstock, A.; Feldhoff, A.; Knebel, A.; Gu, J.; Meng, H.; Caro, J. Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. J. Am. Chem. Soc. 2018, 140, 10094-10098.
6. Wu, C. Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; Zhao, Y. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. J. Am. Chem. Soc. 2018, 140, 10016-10024.
7. Yan, S.; Guan, X.; Li, H.; Li, D.; Xue, M.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Three-Dimensional Salphen-Based Covalent–Organic Frameworks as Catalytic Antioxidants. J. Am. Chem. Soc. 2019, 141, 2920–2924.
8. Xu, H.; Tao, S.; Jiang, D. Proton Conduction in Crystalline and Porous Covalent Organic Frameworks. Nat. Mater. 2016, 15, 722–726.
9. Cui, F.-Z.; Xie, J.-J.; Jiang, S.-Y.; Gan, S.-X.; Ma, D.-L.; Liang, R.-R.; Jiang, G.-F.; Zhao, X. A Gaseous Hydrogen Chloride Chemosensor Based on a 2D Covalent Organic Framework. Chem. Commun. 2019, 55, 4550-4553.
10. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. Angew. Chemie Int. Ed. 2008, 47, 8826–8830.
11. El-Mahdy, A. F. M.; Kuo, C.-H.; Alshehri, A. A.; Kim, J.; Young, C.; Yamauchi, Y.; Kuo, S.-W. Strategic Design of Triphenylamine- and Triphenyltriazine-Based Two-Dimensional Covalent Organic Frameworks for CO2 Uptake and Energy Storage. J. Mater. Chem. A 2018, 6, 19532-19541.
12. El-Mahdy, A. F. M.; Hung, Y.-H.; Mansoure, T. H.; Yu, H.-H.; Chen, T.; Kuo, S.-W. A Hollow Microtubular Triazine- and Benzobisoxazole-Based Covalent Organic Framework Presenting Sponge-Like Shells That Functions as a High-Performance Supercapacitor. Chem. An Asian J. 2019, 14, 1429-1435.
13. Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks. J. Am. Chem. Soc. 2007, 129, 12914–12915.
14. Spitler, E. L.; Koo, B. T.; Novotney, J. L.; Colson, J. W.; Uribe-Romo, F. J.; Gutierrez, G. D.; Clancy, P.; Dichtel, W. R. A 2D Covalent Organic Framework with 4.7-Nm Pores and Insight into Its Interlayer Stacking. J. Am. Chem. Soc. 2011, 133, 19416–19421.
15. Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed Synthesis of Large-Pore Crystalline Polyimide Covalent Organic Frameworks. Nat. Commun. 2014, 5, 4503.
16. Baldwin, L. A.; Crowe, J. W.; Shannon, M. D.; Jaroniec, C. P.; McGrier, P. L. 2D Covalent Organic Frameworks with Alternating Triangular and Hexagonal Pores. Chem. Mater. 2015, 27, 6169–6172.
17. Huang, N.; Zhai, L.; Coupry, D. E.; Addicoat, M. A.; Okushita, K.; Nishimura, K.; Heine, T.; Jiang, D. Multiple-Component Covalent Organic Frameworks. Nat. Commun. 2016, 7, 1–12.
18. Kanti Das, S.; Mishra, S.; Manna, K.; Kayal, U.; Mahapatra, S.; Das Saha, K.; Dalapati, S.; Das, G. P.; Mostafa, A. A.; Bhaumik, A. A New Triazine Based π-Conjugated Mesoporous 2D Covalent Organic Framework: Its in Vitro Anticancer Activities. Chem. Commun. 2018, 54, 11475–11478.
19. Ma, J.-X.; Li, J.; Chen, Y.-F.; Ning, R.; Ao, Y.-F.; Liu, J.-M.; Sun, J.; Wang, D.-X.; Wang, Q.-Q. Cage Based Crystalline Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 3843–3848
20. Zhou, T.; Xu, S.; Wen, Q.; Pang, Z.; Zhao, X. One-Step Construction of Two Di Ff Erent Kinds of Pores in a 2D Covalent Organic Framework. J. Am. Chem. Soc. 2014, 136, 15885–15888.
21. Tian, Y.; Xu, S. Q.; Qian, C.; Pang, Z. F.; Jiang, G. F.; Zhao, X. Two-Dimensional Dual-Pore Covalent Organic Frameworks Obtained from the Combination of Two: D2hsymmetrical Building Blocks. Chem. Commun. 2016, 52, 11704–11707.
22. Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. Highly Emissive Covalent Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800.
23. Sun, Q.; Aguila, B.; Lan, P. C.; Ma, S. Tuning Pore Heterogeneity in Covalent Organic Frameworks for Enhanced Enzyme Accessibility and Resistance against Denaturants. Adv. Mater. 2019, 1900008.
24. Pang, Z. F.; Zhou, T. Y.; Liang, R. R.; Qi, Q. Y.; Zhao, X. Regulating the Topology of 2D Covalent Organic Frameworks by the Rational Introduction of Substituents. Chem. Sci. 2017, 8, 3866–3870.
25. Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.
26. Chen, X.; Huang, N.; Gao, J.; Xu, H.; Xu, F.; Jiang, D. Towards Covalent Organic Frameworks with Predesignable and Aligned Open Docking Sites. Chem. Commun. 2014, 50, 6161–6163.
27. Feng, S.; Xu, H.; Zhang, C.; Chen, Y.; Zeng, J.; Jiang, D.; Jiang, J.-X. Bicarbazole-Based Redox-Active Covalent Organic Frameworks for Ultrahigh-Performance Energy Storage. Chem.
Commun. 2017, 53, 11334-11337.
28. Pang, Z.-F.; Xu, S.-Q.; Zhou, T.-Y.; Liang, R.-R.; Zhan, T.-G.; Zhao, X. Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy. J. Am. Chem. Soc. 2016, 138 , 4710–4713.
29. Zhu, Y.; Wan, S.; Jin, Y.; Zhang, W. Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures. J. Am. Chem. Soc. 2015, 137, 13772–13775.
30. Ascherl, L.; Sick, T.; Margraf, J. T.; Lapidus, S. H.; Calik, M.; Hettstedt, C.; Karaghiosoff, K.; Döblinger, M.; Clark, T.; Chapman, K. W.; et al. Molecular Docking Sites Designed for the Generation of Highly Crystalline Covalent Organic Frameworks. Nat. Chem. 2016, 8, 310–316.
31. Kandambeth, S.; Shinde, D. B.; Panda, M. K.; Lukose, B.; Heine, T.; Banerjee, R. Enhancement of Chemical Stability and Crystallinity in Porphyrin-Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angew. Chemie Int. Ed. 2013, 52, 13052–13056.
32. Huang, N.; Wang, P.; Jiang, D. Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nat. Rev. Mater. 2016, 1, 16068.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-07-16
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.150.59
論文開放下載的時間是 校外不公開

Your IP address is 13.58.150.59
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2024-07-16

QR Code