Responsive image
博碩士論文 etd-0616120-154311 詳細資訊
Title page for etd-0616120-154311
論文名稱
Title
熱蒸鍍二氧化錫電子傳輸層應用於鈣鈦礦太陽能電池之研究
Thermal Deposition Tin Dioxide Electron Transporting Layer in Perovskite Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-15
繳交日期
Date of Submission
2020-07-16
關鍵字
Keywords
退火溫度、熱蒸鍍、電子傳輸層、鈣鈦礦太陽能電池、二氧化錫薄膜
Annealing temperature, Thermal evaporation, Electron transporting layer, SnO2 thin film, Perovskite solar cells
統計
Statistics
本論文已被瀏覽 5662 次,被下載 0
The thesis/dissertation has been browsed 5662 times, has been downloaded 0 times.
中文摘要
為了研究鈣鈦礦太陽能電池量產的可行性,本研究選擇以具有良好的電與光學特性的二氧化錫作為電子傳輸層,研究方向主要集中在通過物理氣相沉積技術實現大規模生產以及鈣鈦礦太陽能電池的商業化。為了實現可靠且可控制的批量生產,透過熱蒸鍍而不是溶液旋塗製備二氧化錫。在優化元件的過程中,透過改變二氧化錫退火溫度和厚度,闡明了二氧化錫薄膜的特性與鈣鈦礦太陽能電池性能之間的關係。利用掃描式電子顯微鏡、可見光-紫外光吸收頻譜儀與光致發光量測系統分析薄膜特性。經文獻所述,結晶性與退火溫度可能成正關係。然而,高結晶導致載子在長波長部分傳輸不佳並且造成電特性下降。二氧化錫薄膜最佳的退火溫度為300 °C與100奈米厚度,以此條件製成鈣鈦礦太陽能電池並經AM1.5太陽光模擬器量測,其結果如下:電流密度為 22.4 mA/cm2、開路電壓為 931 mV、填充因子為 0.51 與光電轉換效率為 10.65 %。
Abstract
Tin dioxide thin films with excellent electrical and optical properties are demonstrated for the fabrication of perovskite solar cells. Here, my research is focused on the seminal work for the realization of mass production by physical vapor deposition technique and, thereby, the commercialization of perovskite solar cells. To achieve the reliable and controllable mass production, tin dioxide is prepared by thermal evaporation instead of solution process. The relationship between the properties of SnO2 thin films and the performance of the perovskite solar cells is elucidated, varying annealing temperatures and thicknesses. Scanning electron microscopy, UV-vis absorption spectrometer, and photoluminescence are used to analyze the characteristics of the thin film. The recognized crystallinity of the SnO2 thin films is positively related to the annealing temperature. However, high crystallinity results in decreased transmission of the spectrum at long wavelengths and deteriorated electrical properties. The perovskite solar cells fabricated with the 100nm-thick SnO2 thin films annealed at 300°C exhibits the higher performance. The results of the solar cells measured under AM 1.5 illumination are as follows: the current density is 22.4 mA/cm2, the open circuit voltage is 931 mV, the fill factor is 0.51, and the power conversion efficiency is 10.65%.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
Table of Contents iv
Figure vii
Table ix
Chapter 1 Introduction 1
1-1 Energy and solar cells 1
1-2 The history of perovskite solar cells 3
Chapter 2 Basic theory 5
2-1 Spectrum of sun and the surface solar radiation intensity 5
2-2 The Materials of perovskite solar cells 8
2-3 Theory of perovskite solar cell 10
2-3-1 Free carriers and exciton formation 10
2-3-2 Exciton and charge diffusion 10
2-3-3 Charge transport and collection 10
2-4 The characteristic of perovskite solar cell 12
2-4-1 Open circuit voltage, VOC 12
2-4-2 Short circuit current density, JSC 12
2-4-3 Fill factor, F.F. 12
2-4-4 Power conversion efficiency, PCE 13
2-5 The structure and type of perovskite solar cell 15
2-6 The window layer and electron transport layer 17
2-7 Motivation of work 18
Chapter 3 Experiment section 19
3-1 Experimental equipment 19
3-1-1 Ultrasonic cleaning machine 19
3-1-2 UV-ozone treatment 19
3-1-3 Spin coater 19
3-1-4 Glove box 19
3-1-5 Furnace 20
3-1-6 Thermal evaporator 20
3-2 Experimental process and solution 21
3-2-1 Cathode etching process 21
3-2-2 Solution process and materials 23
3-2-3 Fabrication of solar cells 24
3-3 Measurement equipment 25
3-3-1 Solar simulator system 25
3-3-2 UV-vis absorption spectrometer 26
3-3-3 Scanning electron microscope 27
Chapter 4 Result and discussion 28
4-1 Structure and band gap 28
4-2 The surface morphology of SnO2 thins films deposited by thermal evaporator 30
4-3 The optimization of SnO2 annealing temperature and thickness 32
4-4 The photoluminescence 41
4-5 The optical property 45
Chapter 5 Conclusion 48
Chapter 6 Future work 49
References 50
參考文獻 References
1. Dudley, B.J.B.S.R., London, UK, accessed Aug, BP statistical review of world energy. 2018. 6: p. 2018.
2. Ellabban, O., et al., Renewable energy resources: Current status, future prospects and their enabling technology. 2014. 39: p. 748-764.
3. 張正華。光電科學,有機與塑膠太陽能電池。2007:五南。
4. Lindsey, R.J.N.E.O., Greenbelt, MD, accessed Oct, Climate and earth’s energy budget. 2009. 9: p. 2017.
5. Statistics, I.J.I.E.A., Key world energy statistics 2017. 2017.
6. Green, M.A.J.P.i.P.R. and applications, Silicon photovoltaic modules: a brief history of the first 50 years. 2005. 13(5): p. 447-455.
7. Darling, S.B. and F.J.R.A. You, The case for organic photovoltaics. 2013. 3(39): p. 17633-17648.
8. Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. 2009. 131(17): p. 6050-6051.
9. Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. 2012. 2: p. 591.
10. Ke, W., et al., Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. 2015. 137(21): p. 6730-6733.
11. Jiang, Q., et al., Planar‐structure perovskite solar cells with efficiency beyond 21%. 2017. 29(46): p. 1703852.
12. Laboratory, N.R.E., Best Research‐Cell Efficiency Chart. 2019, NREL Golden, CO.
13. 施仁親、陳震偉與吳登峻。光電產業與技術情報,太陽光模擬器要求與新型LED太陽光模擬器簡介。2011(92):p. 56-62。
14. 陳頤承、郭昭顯與陳俊亨,太陽電池量測技術。工業材料雜誌,2006。258。
15. Metal-Oxides, T.F., Fundamentals and Applications in Electronics and Energy. 2010, Ramanathan, S., Ed.
16. Lin, Q., et al., Electro-optics of perovskite solar cells. 2015. 9(2): p. 106.
17. Jung, H.S. and N.G.J.s. Park, Perovskite solar cells: from materials to devices. 2015. 11(1): p. 10-25.
18. Hao, F., et al., Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. 2014. 136(22): p. 8094-8099.
19. Lee, M.M., et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. 2012. 338(6107): p. 643-647.
20. Baranowski, M. and P.J.A.E.M. Plochocka, Excitons in Metal‐Halide Perovskites. 2020: p. 1903659.
21. Lu, N., et al., Understanding the transport mechanism of organic-inorganic perovskite solar cells: The effect of exciton or free-charge on diffusion length. 2019. 66: p. 163-168.
22. You, J., et al., Moisture assisted perovskite film growth for high performance solar cells. 2014. 105(18): p. 183902.
23. Jeng, J.Y., et al., CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. 2013. 25(27): p. 3727-3732.
24. Meng, L., et al., Recent advances in the inverted planar structure of perovskite solar cells. 2016. 49(1): p. 155-165.
25. Xiong, L., et al., Review on the application of SnO2 in perovskite solar cells. 2018. 28(35): p. 1802757.
26. Wang, K., et al., Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells. 2015. 6(5): p. 755-759.
27. Son, D.-Y., et al., 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. 2014. 118(30): p. 16567-16573.
28. Yeom, E.J., et al., Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. 2017. 5(1): p. 79-86.
29. Qin, M., et al., Perovskite solar cells based on low-temperature processed indium oxide electron selective layers. 2016. 8(13): p. 8460-8466.
30. Wilkes, G.C., et al., Laser annealing of TiO2 electron-transporting layer in perovskite solar cells. 2018. 10(48): p. 41312-41317.
31. Ke, W., et al., Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. 2015. 3(47): p. 24163-24168.
32. Roose, B., et al., Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. 2016. 30: p. 517-522.
33. Vig, J.R.J.J.o.V.S., S. Technology A: Vacuum, and Films, UV/ozone cleaning of surfaces. 1985. 3(3): p. 1027-1034.
34. Kachel, T.V., et al., Spin coater. 1990, Google Patents.
35. Lee, H., et al., Engineered optical and electrical performance of rf–sputtered undoped nickel oxide thin films for inverted perovskite solar cells. 2018. 8(1): p. 1-10.
36. Li, Y., et al., Mesoporous SnO 2 nanoparticle films as electron-transporting material in perovskite solar cells. 2015. 5(36): p. 28424-28429.
37. Shewale, P., et al., Structural and photoluminescence characterization of SnO2: F thin films deposited by advanced spray pyrolysis technique at low substrate temperature. 2013. 139: p. 113-118.
38. Babar, A., et al., Structural and optoelectronic properties of antimony incorporated tin oxide thin films. 2010. 505(2): p. 416-422.
39. Wei, J., et al., SnO2‐in‐Polymer Matrix for High‐Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability. 2018. 30(52): p. 1805153.
40. Guo, Y.X., et al., Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019. 65: p. 207-214.
41. Park, M., et al., Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. 2016. 26: p. 208-215.
42. Kumar, P. and P.J.R.a. Lemmens, Photoluminescence quenching and confinement effects in mesoporous silicon: photoluminescence, optical and electrical studies. 2015. 5(111): p. 91134-91139.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2025-07-16
校外 Off-campus:開放下載的時間 available 2025-07-16

您的 IP(校外) 位址是 18.208.172.3
現在時間是 2024-03-29
論文校外開放下載的時間是 2025-07-16

Your IP address is 18.208.172.3
The current date is 2024-03-29
This thesis will be available to you on 2025-07-16.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2025-07-16

QR Code