Responsive image
博碩士論文 etd-0617102-193514 詳細資訊
Title page for etd-0617102-193514
論文名稱
Title
使用光時域反射儀之高密度分波多工系統的即時監控技術研究
In-Service Monitoring Technique of DWDM Systems Using Optical Time-Domain Reflectometer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-03
繳交日期
Date of Submission
2002-06-17
關鍵字
Keywords
監控、即時監控、高密度分波多工、拉曼放大器、光時域反射儀、分波多工
OTDR, monitoring, Raman amplifier, DWDM, in-service
統計
Statistics
本論文已被瀏覽 5767 次,被下載 3048
The thesis/dissertation has been browsed 5767 times, has been downloaded 3048 times.
中文摘要
高密度分波多工(DWDM)系統是目前有效提昇光纖網路頻寬的技術,隨著建設愈來愈多的DWDM系統,將廣泛的使用光塞取多工器 (OADM),因此發展DWDM光纖網路系統中的即時監控技術來提昇系統的可靠度也就越來越重要。在傳統的光纖網路中,使用光時域反射儀(OTDR)來進行非破壞性的即時監控光纖通信系統,已經是一項成熟並廣被應用的技術。但在DWDM系統中,這項技術能否適用,到目前為止還未有人討論或研究。不同架構的OADM是否會影響OTDR進行即時監控?而OTDR發出的高功率脈衝光訊號,與傳送資料的1.55-μm DWDM訊號同時在單模光纖中傳輸,是否會產生激發性拉曼散射(Stimulated Raman scattering, SRS) 的非線性效應,進而對系統的傳輸品質誤碼率造成劣化和影響?
在本論文研究中,我們使用以光纖光柵(Fiber Bragg Grating, FBG)為基礎的OADM架構,並對於使用一個FBG及兩個三埠光循環器(Optical Circulator, OC)的OADM,與使用一個FBG及一個6埠光循環器的OADM,分別提出改良的架構,使它們可以適用於OTDR監控,並在使用這些及直接以麥克森—詹德式光纖光柵(Mach-Zenhder FBG)作為OADM的DWDM系統上,研究同時進行OTDR即時間控的技術。我們以高速(10 Gb/s)調變光訊號並同時以光時域反射儀進行即時監控,討論對系統誤碼率(Bit-Error-Rate, BER)的影響。我們發現,在長距離 (> 80 km) 的10 Gb/s調變的系統中,同時進行OTDR即時監控對系統BER性能影響可以乎略,也就是說,使用了OTDR監控的DWDM系統,可以對系統穩定性與可靠度提高有明顯的助益。最後我們並研究在分佈式拉曼光纖放大DWDM網路中,利用OTDR做即時監控的可行性。

Abstract
Dense wavelength-division multiplexing (DWDM) technology are the provide solutions to increase the capacity of network. With the growth of using the OADM in DWDM system, it is more and more important to research the fault-locating fiber-link in-service supervisory technique for enhance the system reliability. Optical Time Domain Reflectometer (OTDR) is a popular tool to offer an in-service fault-locating of fiber link in fiber-optic transmission systems. But in the DWDM network, this technique is never be used for in-service supervisory application on the system. Are different OADM structures will affect the in-service OTDR monitoring? Since OTDR operates with high peak powers, the stimulated Raman scattering (SRS) effect in the conventional transmission fiber gives rise to power depletion of the data signal, and may degrade the bit-error-rate (BER) performance.
In this work, we investigate the in-service 1.65-μm OTDR monitoring supported FBG-based OADM structures. We improved FBG sandwiched between a pair of three-port optical circulator and multi-port optical circulator (MOC) FBG-based OADM to support OTDR monitoring, and research the technique of in-service OTDR monitoring for FBG-based, MZ-FBG based OADM system. The system bit-error-rate due to the OTDR monitoring a 10-Gb/s long (> 80 km) distance fiber link is examined. Negligible system power penalty, due to the OTDR monitoring, of both structures in 10 Gb/s dense wavelength division multiplexing (DWDM) link is achieved. That is mean the system with OTDR monitoring should have the in-service fault-location monitoring capability to enhance network reliability. We also investigate the in-service OTDR 1.65-μm OTDR monitoring on the distributed Raman application system.

目次 Table of Contents
誌  謝 (Acknowledgments) i
中文摘要 ii
ABSTRACT iii
List of Contents iv
List of Table vii
List of Figure viii
List of Acronyms xii
Chapter 1 Introduction 1
1.1 Review of Fiber Bragg Gratings 1
1.2 Mach-Zehnder Fiber Bragg Gratings 2
1.3 Review of Optical Add-Drop Multiplexer (OADM) 3
1.4 Fiber Raman Amplifier (FRA) 3
1.5 The Dissertation Organization 4
Chapter 2 In-Service OTDR-Monitoring-Supported Fiber-Bragg-Grating Optical Add-Drop Multiplexers 5
2.1 Review of Fiber Bragg Grating-Based OADM Systems 6
2.1.1 Conventional FBG-based OADM 6
2.1.2 Multi-port Optical Circulator FBG-based OADM 6
2.2 OTDR-monitoring-supported FBG-OADMs Configuration 7
2.2.1 Improved Conventional FBG-based OADM (C-type) 7
2.2.2 Improved Multi-port OC FBG-based OADM (M-type) 7
2.3 Demonstration of Short Distance Fiber Link 8
2.3.1 Experimental Setup 8
2.3.2 Experimental Results and Discussions 9
2.4 Demonstration of Long Distance Fiber Link 11
2.4.1 Experimental Setup 11
2.4.2 Experimental Results 12
2.5 Discussion 14
2.6 Summary 14
Chapter 3 In-Service OTDR Supervisory DWDM System Directly Through Mach-ZehnderFiber-Grating Optical Add-Drop Multiplexers 16
3.1 Review of Mach-Zehnder Fiber Bragg Grating OADM 16
3.2 Demonstration of Short Distance Fiber Link 17
3.2.1 Experimental Setup 17
3.2.2 Experimental Results 18
3.3 Demonstration of Long Distance Fiber Link 19
3.3.1 Experimental Setup 19
3.3.2 Experimental Results 20
3.4 Summary 23
Chapter 4 In-service 1.65-μm OTDR Monitoring on Distributed Fiber Raman Amplifier System 24
4.1 Introduction 24
4.2 Experimental Setup 25
4.3 Experimental Results and Discussions 26
4.4 Summary 28
Chapter 5 Conclusions 29
References 31
Biography 75
Publication List 76

參考文獻 References
[1] Y. K. Chen, Y. R. Wu, C. H. Chang, C. C. Lee, F. Y. Tsai, C. S. Wang, Y. K. Tu, “Baseband video distortion due to on-line OTDR monitoring at 1.65-μm with negligible CNR/CSO/CTB degradation,” Technical Digest, 1998 Optical Fiber Communication Conference (OFC '98), paper TuO5.
[2] C. C. Lee, S. Chi, “A practical in-service supervisory technique using reflected-pulse detection based on OTDR for optically amplified passive branched CATV networks,” IEEE Photon. Technol. Lett., vol 11, pp 611-613, May 1999.
[3] C. C. Lee, T. C. Kao and S. Chi, “Simultaneous optical monitoring and fiber supervising for WDM networks using an OTDR combined with concatenated fiber gratings,” IEEE Photon. Technol. Lett., vol. 13, pp. 1026 –1028, Sept. 2001.
[4] S. Tariq, M. K. Dhodhi, J. C. Palais, R. E. Ahmed, “Next generation DWDM networks: demands, capabilities and limitations,” Electrical and Computer Engineering, 2000 Canadian Conference, vol 2, pp. 1003-1007, 2000.
[5] E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, “150 channel supercontinuum CW optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,” Electronics Letters, vol. 37, pp. 304 -306, Mar. 2001.
[6] J. -X. Cai, K. -M. Feng, A. E. Willner, V. Grubsky, D. S. Starodubov, J. Feinberg, “Sampled nonlinearly-chirped fiber-Bragg-grating for the tunable dispersion compensation of many WDM channels simultaneously,” OFC/IOOC '99, Technical Digest vol. 4, pp. 20 -22, 1999.
[7] K. O. Hill, Y. Fujji, D. C. Johnson, and B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett., vol. 32, pp. 647-649, 1978.

[8] C. Tai, S. L. Tzeng, H. C. Chang, and W. I. Way, “Reduction of saturation induced nonlinear distortion in MQW semiconductor optical amplifier using light injection and its application in multi-channel M-QAM signal transmission systems,” IEEE Photon. Technol. Lett., vol. 10, pp. 609-611, 1998.
[9] P. Kaiser, “Key optoelectronic components for optical networks,” Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 and Digest of the LEOS Summer Topical Meetings, pp. II3 -II4, 1999.
[10] “Special issue on multi-wavelength optical technology and networks,” J. Lightwave Technol., vol. 14, no 6. June 1996.
[11] J. F. Massicott, R. Wyatt, B. J. Ainslie and S. P. Craig-Ryan, “Efficient, high power, high gain, Er+ doped silica fiber amplifier,” Electron. Lett., vol. 26, pp. 1038-1039, 1990.
[12] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Ampifiers-Fundamentals and Technology,” Academic Press, San Diego and London, 1999.
[13] K. X. Liu, and E. Garmire, “Understanding the formation of the SRS stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron., vol. 27, pp. 1022-1030, 1991.
[14] “Special Issue on Multi-wavelength Optical Technology and Network,” IEEE/SOA J. Lightwave Technol., vol. 14, pp. 110-120, 1996.
[15] C. R. Giles, and V. Mizrahi, “Low-loss add/drop multiplexers for WDM lightwave networks,” Tech. Dig. IOOC’95, Hong Kong, paper ThC2-1, 1995.
[16] K. P. Jones, M. S. Chaudhry, D. Simeonidou, N. H. Taylor, and P. R. Morkel, “Optical wavelength add-drop multiplexer in installed submarine WDM network,” Electron. Lett., vol. 31, no. 24, pp. 2117-2118, Nov. 1995.
[17] F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense wavelength-divison multiplexer/demultiplexer using phoroimprinted Bragg gratings,” IEEE Photon. Technol. Lett., vol.7, pp. 338-390, April 1995

[18] D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for narrowband wavelength-selective optical tap and combiner,” Electron. Lett., vol. 23, pp. 668-669, 1987.
[19] C. R. Giles, “Lightwave applications of fiber Bragg grating,” J. Lightwave Technol., vol. 15, no. 18, pp. 1391-1404, Aug. 1997.
[20] A. V. Tran, W. D. Zhong, R. S. Tucker, and R. Lauder, “Compact optical add-drop multiplexers with low homodyne crosstalk using a single optical circulator and fiber Bragg gratings,” Tech. Dig. OFC’2000, paper WM39, Mar. 2000.
[21] Y. Sato, and K. Aoyama, “Optical time domain reflectometry in optical transmission lines containing in-line Er-doped fiber amplifiers,' J. Lightwave Technol., vol. 10, pp. 78 - 83, 1992.
[22] Y. K. Chen, W. Y. Guo, W. I. Way, and S. Chi, “In-service supervisory EDFA-repeatered wavelength division multiplexing transmission system,” IEEE Photon. Technol. Lett., vol. 7, no. 8, pp.923 - 925, Aug. 1995.
[23] Y. K. Chen, W. Y. Guo, S. Chi, and W. I. Way, “Demonstration of in-service supervisory repeaterless bi-directional wavelength-division-multiplexing transmission system,” IEEE Photon. Technol. Lett., vol. 7, no. 9, pp. 1084 -1086, Sept. 1995.
[24] G. K. Chang, G. Ellinas, J. K. Gaelin, M. Z. Iqbal, and C. A. Brackett, “Acousic-optic tunable filters for multiwavelength optical cross-connects: crosstalk considerations,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 1056-1066, 1996.
[25] R. E. Wagner, R. C. Alferness, A. A. M. Saleh, and M. S. Goodman, “MONET: Multiwavelength optical networking,” IEEE/OSA J. Lightwave Technol., vol. 14, pp. 1349-1358, 1996.
[26] N. V. Srinivasan, “Add-drop multiplexers and cross-connects for multiwavelength optical networking,” Tech. Dig. OFC ’98, San Jose, CA, paper TuJ1, 1998.
[27] C. R. Giles, and V. Mizrahi, “Low-loss add/drop multiplexers for WDM lightwave networks,” Tech. Dig. OFC ’95, Hong Kong, paper ThC2-1, 1995.
[28] K. P. Jones, M. S. Chaudhry, D. Simeondidou, N. H. Taulor, and P. R. Morkel, “Optical wavelength add-drop multiplexer in installed submarine WDM network,” Electron. Lett., vol. 31, pp. 2117-2118, Nov. 1995.
[29] E. L. Goldstein, A. F. Elrefaie, N. Jackman, and S. Zaidi, “Fiber-amplifier cascades with gain equalization in multiwavelength unidirectional inter-office ring networks,” Tech. Dig. OFC/IOOC ’93, paper TuJ3, 1993.
[30] Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, ”Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1394 -1396, Oct. 2000.
[31] MW9060A Optical Time Domain Reflectometer, Anritsu co. LTD.
[32] MW9076 Optical Time Domain Reflectometer, Anritsu co. LTD.
[33] Y. K. Chen, C. H. Chang, Y. L. Yang, I. Y. Kuo, and T. C. Liang, “Mach-Zehnder-fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Optics Commun., vol. 169, pp. 245-262, Oct. 1999.
[34] C. K. Chan, F. Tong, L. K. Chen, and D. Lam, “Demonstration of a fault-tolerant WDM add-drop/branching unit for long-haul optical transmission systems,” IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 1069-1071, Aug. 1999.
[35] S. A. E. Lewis, S. V. Chernikov, J. R. Taylor, “Broadband high-gain dispersion compensating Raman amplifier,” Electron. Lett., vol. 36, no. 16, pp. 1355 –1356, Aug. 2000.
[36] L. D. Garret, M. Eiselt, R. W. Tkach, V. Dominic, R. Waarts, D. Giltner, and D. Mehuys, “Field demonstration of distributed Raman amplification with 3.8 dB Q-improvement for 5
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code