Responsive image
博碩士論文 etd-0617103-232420 詳細資訊
Title page for etd-0617103-232420
論文名稱
Title
GSK3-beta及Pin1 對於阿滋海默症Tau 蛋白的磷酸化及功能性的調控
Phosphorylation and Functional Regulation of Alzheimer's Tau by GSK3-beta and Prolyl Isomerase Pin1
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-09
繳交日期
Date of Submission
2003-06-17
關鍵字
Keywords
阿滋海默症、磷酸化
phosphorylation, Tau, GSK3-beta, Pin1
統計
Statistics
本論文已被瀏覽 5689 次,被下載 23
The thesis/dissertation has been browsed 5689 times, has been downloaded 23 times.
中文摘要
阿滋海默症為常見的癡呆症之一,在病理學上有兩種特徵:(1)由Aβ(beta-amyloid)在神經元細胞外沈澱累積而形成的老化斑塊(senile plaque)(2)由高度磷酸化的Tau蛋白質在神經元細胞內沈澱累積而形成的神經纖維狀物質(neurofibrillary tangle,NFT)。Tau主要表現在大腦中,為一種微管結合蛋白。高度磷酸化的Tau會影響和微管之間的結合以及促進微管聚合的能力。已有一些能夠磷酸化PHF (paired helical filament) -Tau之proline-directed激酶被辨別出來,其中包括了Glycogen synthase kinase 3β (GSK3β)。在本實驗室先前之研究證明GSK3β可與PHF共同純化出來,而在本論文中,我們利用細胞轉殖證明了GSK3β能與Tau co-localize在老鼠神經融合瘤N18細胞中。也利用Tau、N-Tau、C-Tau、Tau T231A、Tau T231E、Tau 154~441、Tau S396A、Tau S400A、Tau S404A、Tau S413A及Tau S396A S400A來說明GSK3β磷酸化Tau的機制。我們認為Thr-231與Ser-404在GSK3β磷酸化Tau中扮演一重要角色。此外對於T231P motif,以合成之Tautide對GSK3β磷酸化Tau做一競爭性之抑制,說明了T231P motif對於GSK3β磷酸化及結合至Tau是必須的 (necessary) 也是絕對重要的 (critical)。
另外,我們想進一步探討磷酸化對於Tau功能上之調控,因此利用tubulin assembly assay來看Tau T231E、Tau S396E及Tau S400E單一胺基酸位置磷酸化之微管聚合情形。結果發現在上述Tau單一胺基酸位置磷酸化中,都具有促進微管聚合之能力。而利用細胞轉殖將這些質體送入老鼠神經融合瘤N18細胞中過度表現,發現其微管都有bundle情形產生。
而在本實驗室先前之研究中已發現Pin1可結合至被細胞週期中有絲分裂之重要激酶Cdc2磷酸化之Tau Thr-231胺基酸,並且可以回復高度磷酸化Tau失去促進微管聚合之能力。因此本論文中,我們也探討Pin1對於被GSK3β磷酸化之Tau是否也與被Cdc2磷酸化之Tau有相同之調控,結果顯示Pin1可結合至被GSK3β磷酸化之Tau Thr-231胺基酸,並且也可以回復Tau失去促進微管聚合之能力。


Abstract
Alzheimer’s disease (AD), one of the most common dementia, is characterized by the formation two types of aggregation in the brain: senile plaques and neurofibrillary tangles (NFTs). NFTs are composed of hyperphosphorylated Tau. Tau protein mainly expressed in brain and was identified as one of the microtubule-associated proteins (MAPs). Hyperphophorylation on Tau affects its binding to tubulin and capacity to promote microtubule assembly. A number of proline-directed kinase capable of phosphorylating PHF-Tau have been identified, including Glycogen Synthase Kinase-3β (GSK-3β). Here we demonstrated that GSK3β can co-purify with PHFs and can co-localize with Tau in vitro in N18 cells. To examine the phosphorylation mechanism of Tau by GSK-3β, N-terminal, C-terminal, T231A, T231E, 154~441, S396A, S400A, S404A, S413A and S396A S400A mutants of Tau were used, respectively. We were able to demonstrate that phosphorylation on Thr231 and Ser404 in Tau may play important roles for GSK3β phosphorylation and its functional regulation. Most importantly, we have proved that T231P motif is necessary and critical for Tau phosphorylation by GSK3β.
Moreover, we used T231E, S396E and S400E mutants of Tau to understand the functional regulation of Tau by GSK3β phosphorylation by tubulin assembly assay. Surprisingly, we observed all of these Tau mutants can promote tubulin assembly and form tubulin bundles in N18 cells.
It has been proved that Pin1 WW domain can bind to Cdc2-phosphorylated Thr-231-Pro motif of Tau and restore the ability of Tau to promote tubulin assembly. In this study, we also studied whether Pin1 can regulate GSK3β- phosphorylated Tau. The results show that Pin1 WW domain can bind to phosphorylated Thr-231 of Tau by GSK3β and restore the ability of Tau to promote tubulin assembly.


目次 Table of Contents
目錄
ㄧ、中文摘要.............................i
二、英文摘要...........................iii
三、英文縮寫表...........................v
四、序言.................................1
五、材料與方法..........................13
六、結果................................35
七、討論................................52
八、參考文獻............................59
九、表..................................64
十、圖..................................67
十一、附錄..............................89
參考文獻 References
1. Alonso A. del C., Zaidi T., Novak M., Grundke-Iqbal I. and Iqbal K. (2001). Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA 98, 6923-6928
2. Armstrong R. J. E. and Barker R. A. (2001). Neurodegeneration: a failure of neruoregeneration? Lancet 358, 1174-1176
3. Berry R. W., Quinn B., Johnson N., Cochran E. J., Ghoshal N. and Binder L. I. (2001). Pathological glial tau accumulations in neurodegenerative disease: review and case report. Neurochem. 39, 469-479
4. Billingsley M. L. and Kincaid R. L. (1997). Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. 323, 577-591
5. Buee L., Bussiere T., Buee-Scherrer V., Delacourte A. and Hof P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33, 95-130
6. Cohen P. and Frame S. (2001). The renaissance of GSK3. Nature Rev. Mol. Cell Biol. 2, 769-776
7. Daly N. L., Hoffmann R., Otvos L. Jr. and Craik D. J. (2000). Role of phosphorylation in the conformation of τ peptides implicated in Alzheimer’s Disease. Biochemistry 39, 9039-9046
8. Dugue M., Neugroschl J., Sewell M. and Marin D. (2003). Review of dementia. J. Med. 70, 45-53
9. Feany M. B. and Dickson D. W. (1996). Neurodegenerative disorders with extensive Tau pathology: a comparative study and review. Annals Neurol. 40, 139-1147
10.Flaherty D. B., Soria J. P., Tomasiewicz H. G. and Wood J. G. (2000). Phosphorylation of human tau protein by microtubule-associated kinases: GSK3β and Cdk5 are key participants. J. Neurosci. Res. 62, 463-472
11.Frame S. and Cohen P. (2001). GSK3 takes centre stage more than 20 years agter its discovery. Biochem. J. 359, 1-16
12.Gorio A., Vergani L., Lesma E. and Giulio A. M. D. (1998). Neuroprotection, neuroregeneration, and interaction with insulin-like growth factor-I: noval non-anticoagulant action of glycosaminoglycans. J. Neurosci. Res. 51, 559-562
13.Grimes C. A. and Jope R. S. (2001). The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol. 65, 391-426
14.Imahori K., Hoshi M., Ishiguro K., Sato K., Takahashi M., Shiurba R., Yamaguchi H., Takashima A. and Uchida T. (1998). Possible role of tau protein kinases in pathogenesis of Alzheimer’s Disease. Neurobiol. Aging 19, S93-S98
15.Iqbal K., Zaidi T., Bancher C. and Grundke-Iqbal I. (1994). Alzheimer paired helical filaments restoration of the biological activity by dephosphorylation. FEBS Lett. 349, 104-108
16.Ishiguro K., Omori A., Takamatsu M., Sato K., Arioka M., Uchida T. and Imahori K. (1992). Phosphosrylation sites on tau by protein kinase I, a bovine derived kinase generating an epitope of paired helical filaments. Neurosci. Lett. 148, 202-206
17.Johnson G. V. W. and Jenkins S. M. (1996). Tau protein in normal and Alzheimer’s disease brain. Alzheimer’s Disease Rev. 1, 38-54
18.Kaytor M. D. and Orr H. T. (2002). The GSK3β signaling cascade and neurodegenerative disease. Curr. Opin. Neurobiol. 12, 275-278
19.Kryger G., Silman I. and Sussman J. L. (1998). Structure of acetycholinesterase complexed with E2020 (Aricept®): implications for the design of new anti-Alzheimer’s drugs. Structure 7, 297-307
20.Lee V. M-Y, Goedert M. and Trojanowski J. Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121-1159
21.Lu P. J., Wulf G., Zhou X. Z., Davies P. and Lu K. P. (1999). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784-788
22.McShea A., Wahl A. F. and Smith M. A. (1999). Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer’s disease. Medical Hypotheses. 52,525-527
23.Nagy Z., Esiri M. M. and Smith A. D. (1998). The cell division cycle and the pathophysiology of Alzheimer’s disease. Neurosci. 87, 731-739
24.Sang H., Lu Z., Li Y., Ru B., Wang W. and Chen J. (2001). Phosphorylation of tau by glycogen synthase kinase 3β in intact mammalian cells influences the stability of microtubules. Neurosci. Lett. 312, 141-144
25.Selkoe D. J. (2001). Alzheimer’s disease: genes, proteins and therapy. Physiological Rev. 81, 741-765
26.Shahani N. and Brandt R. (2002). Function and malfunctions of the tau proteins. Cell. Mol. Life Sci. 59, 1668-1680
27.Sobue K., Agarwal-Mawal A., Li W., Sun W., Miur Y. and Paudel H. K. (2000). Interaction of neuronal Cdc2-like protein kinase with microtubule-associated protein Tau. J. Biol. Chem. 275, 16673-16680
28.Sperber B. R., Leight S., Goedert M. and Lee V. M.-Y. (1995). Glycogen synthase kinase-3β phosphorylates tau protein at multiple sites in intact cells. Neurosci. Lett. 197, 149-153
29.Strooper B. D. and Woodgett J. (2003). Mental plaque removal. Nature 423, 392-393
30.Sun W., Qureshi H. Y., Cafferty P. W., Sobue K., Agarwal-Mawal A., Neufield K. D. and Paudel H. K. (2002). Glycogen synthase kinase-3β is complexed with tau protein in brain microtubules. J. Biol. Chem. 277, 11933-11940
31.Takashima A., Noguchi K., Sato K., Hoshino T. and Imahori K. (1993). Tau protein kinase I is essential for amyloid β-protein-induced neurotoxicity. Proc. Natl. Acad. Sci. USA 90, 7789-7793
32.Tseng H. C., Lu Q., Henderson E. and Graves D. J. (1999). Phosphorylated tau can promote tubulin assembly. Proc. Natl. Acad. Sci. USA 96, 9503-9508
33.Utton M. A., Vandecandelaere A., Wagner U., Reynoles C. H., Gibb G. M., Miller C. C. J., Bayley P. M. and Anderton B. H. (1997). Phosphorylation of tau by glycogen synthase kinase 3β affects the ability of tau to promote microtubule self-assembly. Biochem. J. 323, 741-747
34.Wagner U., Utton M., Gallo J.-M., and Miller C. C. J. (1996). Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organization. J. Cell Sci. 109, 1537-1543
35.Wilhelmsen K. C. (1999). The tangled biology of tau. Proc. Natl. Acad. Sci. USA 96, 7120-7121
36.Yen Y. C. (2002). Molecular interaction of Tau protein and microtubule. National Sun-Yat Sen Univeristy
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.253.93
論文開放下載的時間是 校外不公開

Your IP address is 18.119.253.93
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code