Responsive image
博碩士論文 etd-0617105-101950 詳細資訊
Title page for etd-0617105-101950
論文名稱
Title
經高比率擠型AZ31鎂合金之低溫高速超塑性研發與變形機構之分析
Development and Analysis of Low Temperature and High Strain Rate Superplasticity in High-Ratio Extruded AZ31 Mg Alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
224
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-04-26
繳交日期
Date of Submission
2005-06-17
關鍵字
Keywords
超塑性、織構、鎂合金、等徑轉角擠形
Texture, Superplasticity, ECAP, Magnesium alloy
統計
Statistics
本論文已被瀏覽 5665 次,被下載 692
The thesis/dissertation has been browsed 5665 times, has been downloaded 692 times.
中文摘要
本研究將商用AZ31鎂合金經簡易擠型加工後,可使該合金呈現低溫及高速超塑性。經擠型後的晶粒可細化至1-4 μm。加工後的鎂板可得到50%優異的室溫伸長量,在高速超塑性測試條件下也獲得1000%的伸長量。同時鎂合金也利用等徑轉角擠製法(ECAP)來達到合金內部晶粒細化。在125及150oC低溫條件下可達到200%和461%的伸長量,該測試溫度分別為0.43與0.46鎂合金熔點溫度。結果顯示經由加工後的鎂合金可以達到低溫超塑性。
利用x-ray繞射圖形,背向散射電子繞射(EBSD)以及穿透式電子顯微鏡(TEM)選區繞射的方法,針對擠型及等徑轉角擠製後的材料,研究其織構行為及高角度晶界之比率。經一系列實驗分析,從結果可觀察到擠型棒材的主要織構為<10-10>平行擠型方向,等徑轉角擠製後的織構為<-2-576>平行擠型方向。至於擠型板材,主要織構則為{0002}基面平行擠型方向。
本實驗透過不同的拉伸溫度測試,觀察不同溫度區間的變形機構。在150 ~ 200oC,變形機構以差排滑移為主,計算後之活化能所對應機構為熱活化差排滑移。在250 ~ 300oC之測試區間,變形機構則以晶界滑移為主,控制速率之主要擴散步驟為晶界擴散。
Abstract
There have been numerous efforts in processing metallic alloys into fine-grained materials, so as to exhibit high strain rate superplasticity (HSRSP) and/or low temperature superplasticity (LTSP). The current study is to apply the most simple and feasible one-step extrusion method on the commercial AZ31 magnesium billet to result in low temperature and high strain rate superplasticity (LT&HSRSP). The one-step extrusion was undertaken using a high extrusion ratio at 250-350oC, and the grain size after one-step extrusion became ~1-4 mm. The processed AZ31 plate exhibited high room temperature tensile elongation up to 50%, as well as superior LTSP and/or HSRSP up to 1000%. Meanwhile, the AZ31 alloy was also conducted by equal-channel angular pressing (ECAP). It is demonstrated that an elongation of 461% may be attained at a temperature of 150oC, equivalent to 0.46 Tm where Tm is the absolute melting temperature. This result clearly demonstrates the potential for achieving low temperature superplasticity.
A detailed investigation, using x-ray diffraction (XRD), electron back scattering diffraction (EBSD), and transmission electron microscopy / selected area diffraction (TEM/SAD), revealed different textures in the as-extruded and as-ECAP bars. These dominant textures were characteristic of <10 0>//ED in the extruded bars and < 76>//ED in the ECAP condition, where ED is the extrusion direction. The results show that the basal planes tend to lie parallel to the extrusion axis in the extruded bars but there is a rearrangement during ECAP and the basal planes become reasonably aligned with the theoretical shearing plane. As to the extruded plates, the {0002} planes tended to lie on the plane that contains the extrusion axis.
At different tensile temperatures, different deformation mechanisms would be dominant. Over the lower loading temperatures within 150-200oC, the true strain rate sensitivity, mt, after extracting the threshold stress is determined to be 0.28, suggesting that power-law dislocation creep but the Qt value is not related to any creep mechanism. It should be partly due to thermal activated dislocation slip mechanism. However, more data need to be tested systematically this part in the future study in order to define the correct deformation mechanism. As to the loading temperatures over 250-300oC, the mt value and the true activation energy for the extruded specimens are calculated to be ~0.4-0.5 and ~90-100 kJ/mol, implying that the major deformation mechanism is grain boundary sliding plus minor solute drag creep, with the rate controlling diffusion step being the magnesium grain boundary diffusion.
目次 Table of Contents
Table of Content i
List of Tables v
List of Figures vii
Abstract xiii
中文提要 xv
誌謝 xvi
Chapter 1 Introduction 1
1.1 The basic character of superplastic materials 1
1.2 Types of superplasticity 3
1.2.1 Fine structure superplasticity (FSS) 3
1.2.2 Internal stress superplasticity (ISS) 4
1.2.3 High strain rate superplasticity (HSRSP) or low temperature superplasticity (LTSP) 5
1.2.4 Coarse grained superplasticity (CGSP) 5
1.2.5 Other mechanisms 7
1.3 The development and application of magnesium alloys 7
1.4 Properties of magnesium alloys 9
1.4.1 The classification of magnesium alloys 9
1.4.2 Grain size 10
1.4.3 Solute content in magnesium alloys 10
1.4.4 Grain refining processes 12
1.4.4.1 Rapid solidification (RS) 12
1.4.4.2 Powder metallurgy (PM) 13
1.4.4.3 Rolling 14
1.4.4.4 Equal channel angular pressing (ECAP) 14
1.4.4.5 Forging 17
1.4.4.6 Extrusion 17
1.4.4.7 Double extrusion and cyclic (reciprocal) extrusion 18
1.4.4.8 A two-step processing route 19
1.4.5 Room temperature tensile properties 20
1.5 Superplastic behavior in magnesium alloys 20
1.5.1 HSRSP in magnesium alloys 21
1.5.2 LTSP in magnesium alloys 22
1.5.3 Deformation mechanisms 22
1.6 Cavitation 23
1.7 Crystal orientation and overview of techniques for microtexture determination 24
1.7.1 Overview of techniques for microtexture determination 25
1.7.2 The basic principles and setup of typical EBSD system 25
1.7.3 The study of texture in magnesium alloy 26
1.8 Motive of the research 27
Chapter 2 Experimental Methods 29
2.1 Materials 29
2.2 Grain refining processes 30
2.2.1 Extrusion 30
2.2.2 Processing route of equal-channel-angular pressing 31
2.3 Evaluation of superplasticity behavior 32
2.3.1 Tensile tests 32
2.3.2 Strain uniformity 32
2.3.3 Strain rate sensitivity (m-value) 33
2.4 Microstructure observations 33
2.4.1 Grain size and cavitation 33
2.4.2 TEM 34
2.4.3 Thermal stability 34
2.4.4 Fractography examinations 35
2.5 Microhardness measurements 35
2.6 Texture characterization 35
2.6.1 X-ray diffraction 35
2.6.2 EBSD 36
2.6.3 TEM 36
Chapter 3 Experimental Results and Discussions 37
3.1 Microstructure characterization 37
3.1.1 Grain size evolution 37
3.1.2 Influence of annealing temperature and time 38
3.1.3 Microstructures in specimens subject to different superplastic strains and temperatures 39
3.2 Microhardness 40
3.3 Tensile properties 41
3.3.1 Room temperature tensile properties 41
3.3.2 Superplastic behavior over 150-300oC and 10-4-10-1 s-1 43
3.3.2.1 Comparison of LTSP in the E1 and E1B specimens 43
3.3.2.2 Comparison of the E1 and E2 specimens processed to different extrusion ratios 45
3.3.2.3 Comparison of the E2 and the E2B specimens processed into different geometric shapes 45
3.3.2.4 Comparison of the E2B and E3 specimens processed to different extrusion ratios 47
3.3.2.5 Comparison of the E3 and E3B specimens to different plate thicknesses 47
3.3.3 Plastic anisotropy 49
3.3.4 Fractography after tensile testing 50
3.4 Texture characterization 52
3.4.1 Texture determined by X-ray diffraction patterns 52
3.4.2 Texture evolution during static annealing 53
3.4.3 Texture determined by X-ray pole figures 54
3.4.4 Texture determined by EBSD 55
3.4.5 Texture determined by TEM 56
3.4.6 Grain misorientation distributions 57
Chapter 4 Analyses of deformation Mechanisms 61
4.1 Temperature dependence of elastic modulus 61
4.2 Analysis of deformation mechanisms 61
4.2.1 Apparent strain rate sensitivity, ma 63
4.2.2 Threshold stress (sth) and true stain rate sensitivity (mt) 66
4.2.3 True activation energy, Qt 67
4.3 Comparison for specimens processed by ECAP 69
4.4 Comparison between extruded AZ31 and AZ91 alloys 70
4.5 Texture evolution during thermomechanical treatments 70
4.6 Design for continuous industry processing line 72
Chapter 5 Conclusions 74
References 77
Tables 84
Figures 117

LIST OF TABLES

Table 1-1 Summarizes the typical HSRSP materials 84
Table 1-2 List the reports on LTSP 85
Table 1-3 Some characters compared among magnesium, steels, cast irons, copper, aluminum alloys and engineering plastics 86
Table 1-4 The physical or mechanical characters in magnesium 87
Table 1-5 The standard four-part ASTM alloy designations system and temper for the magnesium alloys 88
Table 1-6 The relationship between grain size and mechanical properties of AZ91 89
Table 1-7 The effect of separate solute additions of elements on the mechanical properties 90
Table 1-8 Summary of ECAP applications for Mg alloys 92
Table 1-9 Evidence for superplasticity at low temperature after ECAP 94
Table 1-10 Room temperature tensile properties after ECAP 95
Table 1-11 Comparison of superplastic properties in commercial AZ and ZK series Mg alloys without ECAP 96
Table 1-12 Summary of tensile elongation of Mg based materials at room temperature 98
Table 1-13 HSRSP and LTSP in the Magnesium alloys 99
Table 1-14 Summary of superplastic behaviors, deformation mechanisms, and activation energy of Mg based materials 100
Table 2-1 Chemical composition of the AZ31 (in wt%) 101
Table 2-2 The AZ31 specimens in this study 102
Table 3-1 Grain size and room temperature tensile properties of the AZ31 billet, extruded and ECAP specimens 103
Table 3-2 The variation of grain size for the E3 specimens after static annealing .104
Table 3-3 Room temperature tensile properties at 1x10-3 s-1 for the E3 specimens after extrusion and post-annealing 105
Table 3-4 Room temperature tensile properties at 1x10-3 s-1 for the E3B specimens after extrusion and post-annealing 106
Table 3-5 Comparison of the mechanical properties of the E1 and E1B AZ31 specimens with and without ECAP 107
Table 3-6 Comparison of the mechanical properties of the E1 and the E2 specimens processed to different extrusion ratios 108
Table 3-7 Comparison of the mechanical properties of the E2 and the E2B specimens processed into different geometric shapes 109
Table 3-8 Comparison of the mechanical properties of the E2B and the E3 specimens processed to different extrusion ratios 110
Table 3-9 Comparison of the E3 and the E3B specimens to different thicknesses 111
Table 3-10 Summary of the measured grain size and X-ray peak intensity ratio for the (0002) reflection over the (10 1) and (10 3) reflections for the E3 specimens 112
Table 3-11 Schmid factors calculated for E1 and E1B specimens 113
Table 4-1 The measured apparent strain rate sensitivity ma values based on the true stress-strain curves over strain rate of 1x10-1-1x10-4 s-1 114
Table 4-2 The measured strain rate sensitivity m-value for the E2B samples based on the jump strain rate tests 115
Table 4-3 Comparison of AZ31B and AZ91D Mg alloys processed by high-ratio (HR) extrusion and ECAP 116


LIST OF FIGURES


Figure 1-1 High temperature deformation behavior of fine-grained materials 117
Figure 1-2 Changes in hardness after heating at various temperatures for 2 hours, (a) P/M, (b) I/M materials 118
Figure 1-3 Tensile strength and elongation of the P/M and I/M materials at different test temperatures 119
Figure 1-4 Schematic drawing of equal channel angular pressing. 120
Figure 1-5 Illustration of the principle of an EBSD system 121
Figure 1-6 Illustration of the set-up of an EBSD system 121
Figure 1-7 Schematic Euler angles (j1, f, j 2), which would specify an orientation 122
Figure 1-8 Schematic illustration of the misorientation angle between two grains 122
Figure 2-1 Processing routes for this research 123
Figure 2-2 Specimen configurations of (a) extruded rod with a gauge length of 8.3 mm and (b) extruded sheet with a gauge length of 5.5 mm 124
Figure 2-3 Schematic illustration of the jump-strain-rate test 125
Figure 2-4 Schematic illustration of the procedure used for taking the microhardness measurements on the transverse-sectional plane 126
Figure 3-1 The appearances of samples after extrusion and ECAP 127
Figure 3-2 The OM micrographs of the as-received AZ31 billet seen from the cross-sectional plane 128
Figure 3-3 The OM micrographs of the extruded (a) E1, (b) E1B, (c) E2, (d) E2B and (e) E3B specimens 129
Figure 3-4 The OM micrographs of the E3 specimens from the extrusion (a) flat, (b) longitudinal and (c) cross-sectional planes 131
Figure 3-5 Grain structure micrographs of the AZ31 alloy after (a) extrusion to 42:1 at 300oC (OM micrograph, E1 specimen), and (b) further ECAP at 200oC (TEM micrograph, E1B specimen) 132
Figure 3-6 Grain size versus annealing temperature after static annealing holding for 1 h in the extruded E1 and ECAP E1B samples 133
Figure 3-7 Variation of grain size as a function of temperature in the E3 specimen after holding for 1 h in the furnace 134
Figure 3-8 Variation of grain size as a function of time in the E3 specimen at 300oC 134
Figure 3-9 The typical surface topography SEM micrographs taken from the E2B specimens tensile-loaded at 200oC and 6x10-4 s-1 to different strains: (a) 0.29, (b) 0.71, (c) 1.12, and (d) 1.39 135
Figure 3-10 The typical surface topography SEM micrographs taken from the E2B specimens tensile-loaded at 300oC and 6x10-4 s-1 to different strains: (a) 0.24, (b) 0.71, (c) 1.28, (d) 1.80, and (e) 2.03 136
Figure 3-11 OM micrographs of the E3 specimens tensile-loaded at 300oC and at 1x10-3 s-1 to different strains: (a) 0.25, (b) 0.47, (c) 0.93, and (d) 1.23 137
Figure 3-12 The microhardness results taken from the transverse-sectional of samples processed by extrusion E1 (upper), and ECAP E1B (lower) specimens 138
Figure 3-13 Microhardness of the AZ31 alloy as a function of grain size 139
Figure 3-14 Typical stress-strain curves for the billet, E1 and E1B specimens tensile-loaded at room temperature and 1&acute;10-3 s-1 140
Figure 3-15 Variation of the yield and ultimate tensile stresses of the E3 extruded plate as a function of d-1/2 in accordance with the Hall-Petch relationship 141
Figure 3-16 The macroscopic fracture morphology of the E1 and E1B specimens 142
Figure 3-17 The engineering stress versus engineering strain curves tensile-loaded at RT and the appearance of the E3B specimen after tensile testing 143
Figure 3-18 The true stress versus true strain curves for the E1 (a)(b) and E1B (c)(d) samples tensile-loaded at 150 and 200oC 144
Figure 3-19 Tensile specimens of E1 and E1B before test and tested at 1x10-4 s-1 and 150oC 146
Figure 3-20 Tensile elongation versus strain rate at 150 to 250°C for the (a) E1 and (b) E1B specimens 147
Figure 3-21 The true stress versus true strain curves and the appearance of the E1B specimen after static annealing at 125oC for 7 h tensile-loaded at 125oC and 1x10-4 s-1 148
Figure 3-22 The variation of elongation to failure as a function of test temperature 149
Figure 3-23 The variation of elongation to failure as a function of strain rate 149
Figure 3-24 The UTS versus tensile temperatures for the E2 and E2B specimens 150
Figure 3-25 The variation of elongation to failure as a function of test temperature for E2 and E2B 151
Figure 3-26 Tensile specimens of the AZ31 E2 extruded rods: (a) fixed strain rate at 1x10-3 s-1 and (b) fixed tensile temperature at 300oC 152
Figure 3-27 Tensile specimens of the AZ31 E2B extruded plates fixed strain rate at 1x10-3 s-1 153
Figure 3-28 Typical true stress and strain curves for the E3 specimens recorded from tensile tests at different initial strain rates for the loading temperatures of 150-300oC 154
Figure 3-29 The UTS versus tensile temperatures for the E2B and E3 specimens 156
Figure 3-30 Typical true stress and strain curves for the E3B specimens recorded from tensile tests at different initial strain rates for the loading temperatures of (a) 150oC, (b) 200oC, (c) 250oC, (d) 280oC and (e) 300oC 157
Figure 3-31 Variation of the tensile elongation as a function of test strain rate for the AZ31 (a) E3 and (b) E3B specimens 159
Figure 3-32 Representative tensile specimens of the AZ31 E3 extruded plates: (a) 250oC and 1x10-4 s-1, (b) 250oC and 8x10-3 s-1, (c) 280oC and 1x10-4 s-1, (d) 280oC and 8x10-3 s-1, (e) 300oC and 1x10-4 s-1, (f) 300oC and 8x10-3 s-1 160
Figure 3-33 Tensile specimens of the AZ31 E3B extruded plates fixed strain rate at 1x10-3 s-1 161
Figure 3-34 Variation of the tensile elongation as a function of test temperature for the E3 and E3B specimens at a strain rate of 1x10-3 s-1 162
Figure 3-35 Variation of cross-sectional area for the E3 specimens deformed at 300oC and 1x10-3 s-1 to tensile strains of 0.25, 0.47, 0.93, and 1.23 163
Figure 3-36 Variation of R for the E3 specimens deformed at 300oC and 1x10-3 s-1 to different tensile strains 163
Figure 3-37 Variation of cross-sectional area for the E2B specimens that deformed during tensile conditions: (a) 200oC, 6x10-4 s-1, (b) 300oC, 6x10-4 s-1, (c) 300oC, 1x10-2 s-1 164
Figure 3-38 Variation of R for the E2B specimens to different elongations 165
Figure 3-39 SEM micrographs of fractures observed in the (a) billet and (b) E3B specimens after tensile test at room temperature 166
Figure 3-40 SEM micrographs of fractures observed in the (a) E1 and (b) E1B specimens after tensile test at room temperature 167
Figure 3-41 The fracture surface of the E1B specimen after tensile testing at 150oC and different strain rates of (a) 1x10-2, and (b) 1x10-4 s-1 168
Figure 3-42 The fracture surfaces of the E3 specimens tensile-loaded at 300oC and (a) 1x10-3, (b) 8x10-3, and (c) 1x10-1 s-1 169
Figure 3-43 The fracture surfaces of the E3B specimens tensile-loaded at 150oC and (a) 1x10-4, (b) 1x10-3, (c) 2x10-3 and (d) 8x10-3 s-1 170
Figure 3-44 The fracture surfaces of the E3B specimens tensile-loaded at 1x10-3 s-1 and (a) 150, (b) 250, (c) 280 and (d) 300oC 171
Figure 3-45 X-ray diffraction patterns of the AZ31 Mg alloy showing the apparent change in texture after severe extrusion: (a) complete random Mg powders, (b) the cross-sectional plane of the as-received billet processed by semi-continuous casting, and (c) the flat plane of the E3 extruded plate 172
Figure 3-46 X-ray diffraction patterns taken from the E1 sample processed with extrusion ratio of 42:1 at 300oC : (a) longitudinal plane and (b) transverse cross-sectional plane 173
Figure 3-47 X-ray diffraction patterns taken from the E1B sample processed after ECAP for 8 passes at 200oC : (a) longitudinal plane and (b) transverse cross-sectional plane 174
Figure 3-48 X-ray diffraction patterns taken from the severely extruded E3 specimen after further annealing for 10 h at (a) 150oC, (b) 250oC, (c) 300oC, and (d) 350oC 175
Figure 3-49 X-ray diffraction patterns taken from the severely extruded E3 specimen after further annealing for 1 h at (a) 150oC, (b) 250oC, (c) 300oC, and (d) 350oC 176
Figure 3-50 The XRD (0002), (10 0) and (10 1) pole figures of the E1 and E1B specimens 177
Figure 3-51 The XRD (0002) pole figures of the E2B and E3 plate specimens 178
Figure 3-52 The EBSD (0002), (10 0) and (10 1) pole figures for the extruded E1 and ECAP E1B conditions 179
Figure 3-53 The TEM bright field images and diffraction patterns taken from the extruded E1 condition 180
Figure 3-54 The TEM bright field images and diffraction patterns taken from the ECAP E1B condition 182
Figure 3-55 The TEM bright field images and diffraction patterns taken from the extruded E2 specimen 184
Figure 3-56 The TEM bright field images and diffraction patterns taken from the extruded E3 specimen 186
Figure 3-57 The inverse pole figures determined by TEM diffraction pattern analysis: (a) E1 and (b) E1B specimens 187
Figure 3-58 The inverse pole figures determined by TEM diffraction pattern analysis in the E2 specimen 188
Figure 3-59 Schematic illustration of the dominant textures in the extruded E1 and ECAP E1B conditions 189
Figure 3-60 Examples of the SAD patterns taken from various adjacent grains in E1 190
Figure 3-61 Examples of the SAD patterns taken from various adjacent grains in the E1B specimen 191
Figure 3-62 Two representative misorientation distributions determined by TEM for the (a) E1 and (b) E1B specimens 192
Figure 3-63 The representative misorientation distributions determined by TEM for the E2 specimen 193
Figure 3-64 Two representative misorientation distributions determined by EBSD for the (a) E1 and (b) E1B specimens 194
Figure 4-1 The flow stress against strain rate curves at 150 to 200oC for the E1B specimen 195
Figure 4-2 The flow stress at e=0.3 against strain rate curves at 150 to 200oC for the E1, E2 and E3 specimens 196
Figure 4-3 The flow stress at e~0.3 versus strain rate for the E2 and E3 specimens at various temperatures 197
Figure 4-4 The E2 specimen tested at 6x10-4 ~ 1x10-3 s-1 198
Figure 4-5 Threshold stress for the E3 specimen 199
Figure 4-6 Threshold stress for the E1B specimen 200
Figure 4-7 The mt–value could be extracted from the slope of the double logarithm plot of the flow stress versus the strain rate 201
Figure 4-8 True activation energy for the E3 specimen using the true stress exponent nt of 2.5 202
Figure 4-9 True activation energy for the E3 specimen using the true stress exponent nt of 2 203
Figure 4-10 True activation energy for the E1B specimen 204
Figure 4-11 Design of the continuous press forming using heated oil or water bath 205
Figure 4-12 Illustration of continuous industrial system 206
Figure 4-13 Detailed design of the forming machine 207
參考文獻 References
[1] S. Hori, M. Tokizane and N. Furushiro, Superplasticity in Advanced Materials. The Japan Society of Research on Superplasticity, Osaka Japan, (1991).
[2] H. Chokshi, A. K. Mukherjee and T. G. Langdon, Mater. Sci. Eng., R10 (1993) p.1.
[3] T. G. Nieh, J. Wadsworth and O. D. Sherby, in Superplasticity in Metals and Ceramics, (1997).
[4] M. Kawazoe, T. Shibata, T. Mukai and K. Higashi, Scripta Mater., 36 (1997) p. 699.
[5] J. W. Edington, Metall. Trans. A, 13A (1982) p. 703.
[6] O. D. Sherby and J. Wadsworth, Prog. Mater. Sci., 33 (1989) p. 169.
[7] I. C. Hsiao and J. C. Huang, Metall. Trans. A, 33A, (2002) p.1373.
[8] O. D. Sherby and J. Wadsworth, in Deformation, Processing and Structure, ed. G. Krauss, ASM, Metal Park, Ohio, (1984) p. 355.
[9] T. G. Nieh and J. Wadsworth, Scripta Mater., 28 (1993) p. 1119.
[10] Z. Cui, W. Zhong and Q. Wei, Scripta Mater., 30 (1994) p.123.
[11] H. S. Cho, H. G. Jeong, M. S. Kim and H. Yamagata, Scripta Mater., 42 (2000) p. 221.
[12] M. Mabuchi, K. Higashi, K. Inoue and S. Tanimura, Scripta Mater., 26 (1992) p. 1839.
[13] M. Mabuchi, K. Higashi, Y. Okada, S. Tanimura, T. Imai and K. Kubo, Scripta Mater., 25 (1991) p. 2517.
[14] M. Mabuchi, K. Higashi, Y. Okada, S. Tanimura, T. Imai and K. Kubo, Scripta Mater., 25 (1991) p. 2003.
[15] T. G. Nieh, C. A. Henshall and J. Wadsworth, Scripta Mater., 18 (1984) p.1405.
[16] R. S. Mishra, R. Z. Valiev, S. X. McFadden, R. K. Islamgaliev and A. K. Mukherjee, Scripta Mater., 40 (1999) p. 1151.
[17] M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi, Mater. Sci.Tech., 13 (1997) p. 825.
[18] T. G. Nieh and J. Wadsworth, Scripta Mater., 32 (1995) p. 1133.
[19] T. G. Nieh, A. J. Schwartz and J. Wadsworth, Mater. Sci. Eng., A208 (1996) p. 30.
[20] S. W. Lim, T. Imai, Y. Nishida and T. Choh, Scripta Mater., 32 (1995) p. 1713.
[21] S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev and A. K. Mukherjee, Nature, 398 (1999) p. 684.
[22] R. Z. Valiev, A. V. Korznikov and R. R. Mulyukov, Mater. Sci. Eng., A168 (1993) p.141.
[23] A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev and A. K. Mukherjee, Scripta Mater., 43 (2000) p. 819.
[24] H. P. Pu and J. C. Huang, Scripta Metall. Mater., 28 (1993) p. 1125.
[25] I. C. Hsiao and J. C. Huang, Scripta Mater., 40 (1999) p.697.
[26] H. Watanabe, T. Mukai, T. G. Nieh and K. Higashi, Scripta Mater., 42 (2000) p.249.
[27] T. K. Ha, W. B. Lee, C. G. Park and Y. W. Chang, Metall. Mater. Trans. 28A (1997) p.1711.
[28] V. M. Imayev, G. A. Salishchev, M. R. Shagiev, A. V. Kuznetsov, R. M. Imayev, O. N. Senkov and F. H. Froes, Scripta Mater., 40 (1999) p.183.
[29] T. R. McNelley, A. V. Korznikov and R. R. Mulyukov, Metall. Trans., 17A (1986) p. 1035.
[30] J. Weertman, J. Appl. Phys., 28 (1957) p. 1185.
[31] W. R. Cannon and O. D. Sherby, Metall. Trans., 1 (1970) p. 1030.
[32] X. Wu and Y. Liu, Scripta Mater., 46 (2002) p. 269.
[33] Y. Liu, X. Wu, Z. Li and Y. Xu, in Proceedings of International Symposium on Materials Science and Technology, 1 (2000) p. 127.
[34] Xin Wu, Yi Liu and Hongqi Hao, Mater. Sci. Forum, 357-359 (2001) p. 363.
[35] 陳錦修,工業材料,186期,(2002) p. 148.
[36] 林景扶, 工業材料,152期,(1999) p. 81.
[37] 楊智超, 工業材料,152期,(1999) p. 72.
[38] S. Spigarelli, Scripta Mater., 42 (2000) p. 397.
[39] H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi, Mater. Sci. Forum, 350-351 (2000) p. 171.
[40] H. Somekawa, M. Kohzu, S. Tanabe and K. Higashi, Mater. Sci. Forum, 350-351 (2000) p.177.
[41] R. W. Cahn, P. Haasen and E. J. Kramer, Materials Science and Technology, Structure and Properties of Nonferrous Alloys, 8 (1996) p. 131.
[42] T. Lyman, H. E. Boyer, P. M. Unterweiser, J. E. Foster, J. P. Hontas and H. Lawton, in Metals Handbook, Metals park, Ohio, (1975).
[43] T. Narutani and J. Takamura, Acta Mater., 39 (1991) p. 2037.
[44] G. Nussbaum, P. Sainfort and G. Regazzoni , Scripta Mater., 23 (1989) p. 1079.
[45] D. Lahaie, J. D. Embury, M. M. Chadwick and G. T. Gray, Scripta Mater., 27 (1992) p. 139.
[46] T. M. Yue, H. U. Ha and N. J. Musson, J. Mater. Sci., 30 (1995) p. 2277.
[47] J. Kaneko, M. Sugamata and N. Hisata, Mater. Sci. Forum, 304-306 (1999) p. 85.
[48] A. Yamashita, Z Horita and T. G. Langdon, Mater. Sci. Eng., A300 (2001) p. 142.
[49] J. K. Solberg, J. Torklep, O. Bauger and H. Gjestland, Mater. Sci. Eng., A134 (1991) p. 1201.
[50] T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa, K. Higashi, Mater. Sci. Eng., A290 (2000) p. 139.
[51] 林鉉凱, “析出型AZ91低溫超塑性之研究”,國立中山大學材料科學與工程研究所碩士論文,2000。
[52] H. K. Lin and J. C. Huang, Key Engineering Materials, 233-236 (2002) p. 875.
[53] T. G. Langdon, Metal. Trans., 13A (1982) p. 689.
[54] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M Furukawa, Z. Horita and T. G. Langdon, Acta Mater., 50 (2002) p. 553.
[55] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Mater., 36 (1997) p. 681.
[56] M. Nabuchi, M Nakamura, K. Ameyama, H. Iwasaki and K. Higashi, Mater. Sci. Forum, 304-306 (1999) p. 67.
[57] M. Mabuchi, K. Ametama, Iwasaki and K. Higashi, Acta mater., 47 (1999) p. 2047.
[58] T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, Scripta Mater., 45 (2001) p.89.
[59] L. Cisar, Y. Yoshida, S. Kamado, Y. Kojima and F. Watanable, Mater. Sci. Forum, 419-422 (2003) p. 249.
[60] Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima, Mater. Trans., 44 (2003) p. 468.
[61] K. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong and J. D. Lee, Acta Mater., 51 (2003) p. 3293.
[62] K. Matsubara, Y. Miyahara, Z. Horita, T. G. Langdon, Acta Mater., 51(2003) p. 3037.
[63] H. Watanabe, T. Mukai, S. Kamado, Y. Kojima and K. Higashi, Mater. Trans., 44 (2003) p. 463.
[64] H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Scripta Mater., 46 (2002) p. 851.
[65] T. Liu, W. Zhang, S. D. Wu, C. B. Tiang, S. X. Li and Y. B. Xu, Mater. Sci. Eng., A360 (2003) p. 345.
[66] Z. Horita, K. Matsubara, K. Makii and T. G. Langdon, Scripta Mater., 47 (2002) p. 255.
[67] Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima, Mater. Tran., 43 (2002) p. 2419.
[68] H. K. Lin, J. C. Huang and T. G. Langdon, submitted to Mater. Sci. Eng., A., (2005).
[69] H. Watanabe, T. Mukai, K. Ishikawa, Y. Okanda and K. Higashi, J. Jpn. Inst. Light Metals, 49 (1999) p. 401.
[70] H. watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi, Mater. Sci. Forum, 350-351 (2000) p. 171.
[71] H. K. Lin and J. C. Huang, Mater. Trans., 43 (2002) p. 2424.
[72] Y. N. Wang and J. C. Huang, Scripta Mater., 48 (2003) p. 1117.
[73] M. Mabuchi, K. Kubota and K. Higashi, Mater. Trans., JIM, 36 (1995) p. 1249.
[74] R. G. Chang (under the guidance of J. W. Yeh): Mater Thesis, Tsing Hua University, 2000.
[75] H. Watanabe, T. Mukai and K. Higashi, Scripta Mater., 40 (1999) p. 477.
[76] H. Watanabe, T. Mukai and K. Higashi, Mater. Sci. Forum, 304-306 (1999) p.303.
[77] H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Scripta Mater., 41 (1999) p. 209.
[78] Y. Chino, M. Mabuchi, K. Shimojima, Y. Yamada, C. Wen, K. Miwa, M. Nakamura, T. Asahina, K. Higashi and T. Aizawa, The Autumn-Metting of the Japan Institute of Metals in Nagoya (2000).
[79] D. M. Lee, B. K. Suh, B. G. Kim, J. S. Lee and C. H. Lee, Mater. Sci. Tech., 13 (1997) p. 590.
[80] T. Mukai, T. G. Nieh, H. Iwasaki and K. Higashi, Mater. Sci. Tech., 14 (1998) p. 32.
[81] A. Galiyev and R. Kaibyshev, Scripta Mater., 51 (2004) p. 89.
[82] M. Mabuchi, Y. Chino, H. Iwasaki, T. Aizawa and K. Higashi, Mater. Trans. 42 (2001) p. 1182.
[83] K. Nakashima, H Iwasaki, T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina and K. Higashi, Mater. Sci. Forum, 350-351 (2000) p. 87.
[84] R. Kariya, H. Iwasaki, T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina and K. Higashi, Mater. Sci. Forum, 350-351 (2000) p. 93.
[85] T. Mohri, M. Mabuchi, N. Saito and M. Nakamura, Mater. Sci. Eng., A257 (1998) p. 287.
[86] S. Kamado, T. Ashie, H. Yamada, K. Sanbun and Y. Kojima, Matre. Sci. Forum, 350-351 (2000) p. 65.
[87] Y. Z. Lu, Q. D. Wang, W. J. Ding, X. Q. Zeng and Y. P. Zhu, Mater. Letters, 44 (2000) p. 265.
[88] R. E. Reed-Hill, Physical Metallurgy Principles, PWS publishing company, Boston, America (1994) p. 729.
[89] T. Imai, S. W. Lim, D. Jiang and Y. Nishida, Scripta Mater., 36 (1997) p. 611.
[90] M. Mabuchi, K. Kubota and K. Higashi, Scripta Mater., 33 (1995) p.331.
[91] H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Mater. Trans., 43 (2002) p. 78.
[92] M. Mabuchi, K. Shimojima, Y. Yamada, C. E. Wen, M. Nakamura, T. Asahina, H. Iwaski, T. Aizawa and K. Higashi, Mater. Sci. Forum, 357-359 (2001) p. 327.
[93] H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Scripta Mater., 46 (2002) p. 851.
[94] H. J. Frost and M. F. Ashby, in Deformation Mechanism Maps, Pergamon, Oxford, (1982).
[95] W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, Acta mater., 49 (2001) p. 3337.
[96] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi, Acta mater., 14 (1999) p.3753.
[97] H. Watanabe, H Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, K. Higashi, Inter. J. Plasticity, 17 (2001) p. 387.
[98] K. Kubota, M. Mabuchi and K. Higashi, J. Mater. Sci., 34 (1999) p. 2255.
[99] C. M. Lombard, A. K. Ghosh and S. L. Semiatin, Metall. Mater. Trans., 32A (2001) p. 2769.
[100] J. Pilling and N. Ridley, Superplasticity in Aerospace, H. C. Heikkenen and T. R. McNelley, eds., TMS, Warrendale, PA, (1988) p. 183.
[101] A. H. Chokshi and A. K. Mukherjee, Mater. Sci. Eng., A110 (1989) p. 49.
[102] J. V. Aguirre, H. Hosokawa and K. Higashi, The Fourth Pacific Rim International Conference on Advanced Materials and Processing, (2001) p. 2039.
[103] H. Iwaskai, T. Mori, M. Mabuchi and K. Higashi, The Fourth Pacific Rim International Conference on Advanced Materials and Processing, (2001) p. 1995.
[104] B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley publishing company, America (1978) p. 295.
[105] Link Opal Operater’s Guide, Opalman 3.0, Issue 1, Oxford Instruments plc, Buckingghamshire, UK, (1997).
[106] V. Randle, Oxford Guide Book Series, Electron Backscatter Diffraction, (1996), p. 3.
[107] V. Randle, Microtexture Determination and Its Applications, Institute of Materials, London, (1992), p. 20.
[108] M. R. Barnett, Journal of Light Metals, 1 (2001) p. 167.
[109] M. T. Perez-Prado and O. A. Ruano, Scripta Mater., 46 (2002) p. 149.
[110] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Mater. Sci. Eng., A257 (1998) p. 328.
[111] 普翰屏, “8090鋁鋰合金低溫與高溫超塑板材之製程開發與形變機構分析”, 國立中山大學材料科學與工程研究所博士論文,1995.
[112] D. B. Williams and C. B. Carter. Transmission Electron Microscopy. Plenum Pub. Press, New York. (1996).
[113] C. J. Lee and J. C. Huang, Acta Mater., 52 (2004) p. 3111.
[114] Y. N. Wang and J. C. Huang, Metall. Mater. Trans. 35A (2004) p. 555.
[115] S. H. Wu, J. C. Huang and Y. N. Wang, Metall. Mater. Trans. 35A (2004) p. 2455.
[116] T. Mukai, K. Ishikawa and K. Higashi, Mater. Sci. Eng., A204 (1995) p. 12.
[117] B. Y. Lou, J. C. Huang, T. D. Wang and T. G. Langdon, Mater. Tran. 43 (2002) p. 501.
[118] R. Ohyama, J. Koike, T. Kobayashi, M. Suzuki and K. Maruyama, Mater. Sci. Forum Vols. 419-422 (2003) p. 237.
[119] I. C. Hsiao, S. W. Su and J. C. Huang, Metall. Mater. Trans. 26A (2000) p. 2169.
[120] A. Ball and M. M. Hutchinson, Met. Sci. J., 3 (1969) p. 1.
[121] R. S. Mishra, T. R. Bieler and A. K. Mukherjee, Acta Metall. Mater., 43 (1995) p. 877.
[122] K-T. Park and F. A. Mohamed, Metall. Mater. Trans. 26A (1995) p. 3119.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code