Responsive image
博碩士論文 etd-0617111-125027 詳細資訊
Title page for etd-0617111-125027
論文名稱
Title
創新碳黑混合多孔性聚醯亞胺感測層於揮發性有機氣體之偵測
Novel Porous Polyimide Film Doped with Carbon Black for Volatile Organic Compounds Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-13
繳交日期
Date of Submission
2011-06-17
關鍵字
Keywords
揮發性有機氣體、電漿蝕刻、聚醯亞胺、碳黑、多孔性
polyimide, porosity, plasma, carbon-black, VOCs
統計
Statistics
本論文已被瀏覽 5702 次,被下載 15
The thesis/dissertation has been browsed 5702 times, has been downloaded 15 times.
中文摘要
本研究開發了一種價格便宜且簡單的微型感測器,用來檢測揮發性有機氣體(VOCs),這種感測器的感測材料方面,主要是運用混合奈米多孔性聚醯亞胺(PI)摻雜碳黑(CB)作為感測材料,利用PI /CB薄膜吸收空氣中的揮發性有機氣體物質改變了晶片的導電特性來作量測。在一般情況下,固態揮發性有機氣體的感測器運用金屬氧化物作為感測材料,此種感測器的工作溫度大約在300–350℃,而本研究開發的揮發性有機氣體 VOCs感測器能於室溫環境做量測,如此可使得感測器能量消耗低。本研究也運用電漿蝕刻來開孔的方式增加了其感測器的敏感度,透過SEM圖片可證實微孔洞結構相互連接並且開啟與外界空氣接觸的面積,而比較在有經開孔的開孔性結構響應值快無開孔的孔洞結構3倍左右。摻雜的碳黑濃度比例經過比較後,此感測晶片在碳黑濃度為1wt.%時有較佳的敏感度和分散性。另外,此研究也反覆量測五次100 ppm的乙醇來展現感測晶片良好的的再現性,量測10 ppm、100 ppm、1000 ppm的苯和乙醇氣體長達24小時的長時間穩定性,量測揮發性有機氣體101 ppm∼105 ppm大範圍濃度的偵測能力,而且對於特定種類的揮發性有機氣體,如:醇類及醛類,則可透過化學鍵結的反應來分析感測材料對於特定氣體的選擇性。再加上本研究對於25oC∼60oC的敏感度做比較,其值在25oC為155%,隨著溫度的升高,到60oC下降至80%左右,降低了約一倍。另外,本研究也可將水氣的影響給偵測出來,其水氣的電容改變量為揮發性有機氣體的16多倍,可利用電容改變量將水氣的影響因素給消除。此研究的製程提供一項簡單且直接的製程方法來製作低成本的VOC感測器。
Abstract
This study developed an inexpensive and simple microsensor for detecting volatile organic compounds (VOCs). This developed VOC sensor is composed of a nano-porous polyimide (PI) film doped with carbon black (CB) as the sensing material. The conductivity of the PI/CB film changed after absorbing VOC contents in the air. In general, solid state based VOC sensors which use metal oxide as the sensing materials have to work at a temperature of about 300–350℃. Alternatively, this research developed a VOC sensor capable of sensing VOCs at room temperature, resulting in a sensor system of low energy consumption. A post pore opening procedure by plasma etching is used to enhance the response of the sensor film. SEM images confirm that the micro-pores interconnect with their neighboring pores and also open to the outside air. The film prepared with pore opening procedure exhibit a response of 3 times faster than the film prepared without pore opening. Results indicate that the developed VOC sensor has a good repeatability for detecting VOCs. PI film with 1% (weight percent) of CB has the best sensitivity due to the well dispersion of CB. This research detected 100 ppm ethanol fifth times to show good reproducibility, and detected 10 ppm, 100 ppm, 1000 ppm benzene and ethanol for 24 hours to show long-term stability, and detected 101 ppm∼105 ppm widely VOCs concentration. Besides, this sensor has selectivity on specific gas like alcohol and aldehyde, the sensor material has special chemical bond that can connect with specific gas. Moreover, the sensitivity is about 155% at 25 oC and 80% at 60 oC, it is almost 2 times at 25 oC. The moisture can also be detected to avoid the impact on the sensor performance for detecting VOCs, the moisture capacitance changes is 16 times higher than VOCs. The sensor developed in this study provides a simple and straight forward method to fabricate low-cost VOC sensors.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
符號表 x
簡寫表 xi
第一章 緒論 1
1.1 前言 1
1.2 揮發性有機氣體 1
1.3 氣體感測器介紹 5
1.3.1 電化學式感測器 5
1.3.2 壓電式感測器 6
1.4.3 光學式感測器 7
1.3.4 電阻式感測器 8
1.4 文獻回顧 11
1.5 研究動機與目標 17
1.6 論文架構 19
第二章 材料及特性介紹 21
2.1 碳黑材料介紹 21
2.1.1 碳黑的結構與基本特性 21
2.1.2 碳黑吸附能力分析 21
2.2 聚醯亞胺(Polyimide) 23
2.3 吸附等溫線分析以及孔洞分佈分析 23
第三章 晶片製作與實驗方法 27
3.1 材料簡介 27
3.2 研究方法 27
3.2.1 濺鍍金屬 28
3.2.2 光罩製作 28
3.2.3 晶片製作 29
3.2.4 製作指叉電極晶片 30
3.2.5 感測層製程 31
3.2.6 氧電漿蝕刻法 33
3.2.7 量測方法 34
第四章 結果與討論 36
4.1 表面電漿蝕刻的效果 36
4.2 吸脫附BET量測 37
4.3 碳黑濃度的影響 43
4.4 感測晶片之再現性量測 43
4.5 感測晶片之長時間穩定性量測 45
4.6 水氣與揮發性有機氣體的電容變化 46
4.7 溫度影響性 47
4.8 不同濃度及不同揮發性有機氣體的偵測極限 48
第五章 結論及未來展望 51
5.1 結論 51
5.2 未來展望 53
參考文獻 54
自述 61
參考文獻 References
[1] U.S. EPA. (2009). Definition of Volatile Organic Compounds (VOC). Available: http://epa.gov/ttn/naaqs/ozone/ozonetech/def_voc.htm
[2] GHS. 危害物資訊 Available: http://ghs.cla.gov.tw/CHT/intro/search.aspx?cssid=3
[3] 林杰樑. 假酒中的甲醇中毒. Available: http://www.greencross.org.tw/toxin/methanol.htm
[4] 楊振昌. 甲醛與癌症的關係. Available:
http://cisc.twbbs.org/lifetype/index.php?op=Default&blogId=1&&page=4
[5] 林意凡. 沉默的骨髓殺手-苯. Available:
http://omih.mc.ntu.edu.tw/creod/iosh/articles/benzene.htm
[6] 吳季融, "空氣中有機污染物自動分析技術之開發研究壹;碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究貳;有機污染物垂直探空光化研究," in 化學研究所. vol. 碩士 桃園縣: 國立中央大學, 2003, p. 140.
[7] D. Clarencon, P. Lestaevel, J. D. Laval, E. Multon, P. Gourmelon, A. Buguet, and R. Cespuglio, "Voltametric measurement of blood nitric oxide in irradiated rats," International Journal of Radiation Biology, vol. 75, pp. 201-208, 1999.
[8] X. H. Zhang and S. F. Wang, "Voltametric behavior of noradrenaline at 2-mercaptoethanol self-assembled monolayer modified gold electrode and its analytical application," Sensors, vol. 3, pp. 61-68, 2003.
[9] N. Diab and W. Schuhmann, "Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide," Electrochimica Acta, vol. 47, pp. 265-273, 2001.
[10] J. S. Do and W. B. Chang, "Amperometric nitrogen dioxide gas sensor: preparation of PAn/Au/SPE and sensing behaviour," Sensors and Actuators B-Chemical, vol. 72, pp. 101-107, 2001.
[11] Y. C. Liu, B. J. Hwang, and W. C. Hsu, "Characteristics of Pd/Nafion oxygen sensor modified with polypyrrole by chemical vapor deposition," Journal of Solid State Electrochemistry, vol. 6, pp. 351-356, 2002.
[12] J. Flueckiger, F. K. Ko, and K. C. Cheung, "Microfabricated Formaldehyde Gas Sensors," Sensors, vol. 9, pp. 9196-9215, 2009.
[13] C. Y. Huang, M. Song, Z. Y. Gu, H. F. Wang, and X. P. Yan, "Probing the Adsorption Characteristic of Metal-Organic Framework MIL-101 for Volatile Organic Compounds by Quartz Crystal Microbalance," Environmental Science & Technology, vol. 45, pp. 4490-4496, 2011.
[14] S. M. Chang, H. Muramatsu, C. Nakamura, and J. Miyake, "The principle and applications of piezoelectric crystal sensors," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 12, pp. 111-123, 2000.
[15] E. Milella and M. Penza, "SAW gas detection using Langmuir-Blodgett polypyrrole films," Thin Solid Films, vol. 329, pp. 694-697, 1998.
[16] M. Penza, E. Milella, and V. I. Anisimkin, "Gas sensing properties of Langmuir-Blodgett polypyrrole film investigated by surface acoustic waves," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 45, pp. 1125-1132, 1998.
[17] H. Bai and G. Q. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[18] N. E. Agbor, J. P. Cresswell, M. C. Petty, and A. P. Monkman, "An optical gas sensor based on polyaniline Langmuir-Blodgett films," Sensors and Actuators B-Chemical, vol. 41, pp. 137-141, 1997.
[19] M. Palumbo, J. Nagel, and M. C. Petty, "Surface plasmon resonance detection of metal ions: Layer-by-layer assembly of polyelectrolyte sensing layers,on a multichannel chip," IEEE Sensors Journal, vol. 5, pp. 1159-1164, 2005.
[20] G. M. u. A. Helwig, G. Sberveglieri, and M. Eickhoff, "On the Low-Temperature Response of Semiconductor Gas Sensors," Hindawi Publishing Corporation Journal of Sensors, vol. 2009, 2009.
[21] G. A. Sotzing, J. N. Phend, R. H. Grubbs, and N. S. Lewis, "Highly sensitive detection and discrimination of biogenic amines utilizing arrays of polyaniline/carbon black composite vapor detectors," Chemistry of Materials, vol. 12, 2000.
[22] Y. H. Liqin Shil , T. Katsubel, M. Nakano, K. Nakamura, "Highly sensitive SnO2-based gas sensor for indoor air quality monitoring," The 13th international Conference on Solid-State Sensors, Actuators and Microsystems,, vol. 2, pp. 1203-1206, 2005.
[23] C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. H. Ma, "A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection," Sensors and Actuators B-Chemical, vol. 122, pp. 503-510, 2007.
[24] C. Y. Lee, P. R. Hsieh, C. H. Lin, P. C. Chou, L. M. Fu, and C. M. Chiang, "MEMS-based formaldehyde gas sensor integrated with a micro-hotplate," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 12, pp. 893-898, 2006.
[25] L. Ruangchuay, A. Sirivat, and J. Schwank, "Selective conductivity response of polypyrrole-based sensor on flammable chemicals," Reactive & Functional Polymers, vol. 61, pp. 11-22, 2004.
[26] H. G. O. Sandberg, T. G. Backlund, R. Osterbacka, S. Jussila, T. Makela, and H. Stubb, "Applications of an all-polymer solution-processed high-performance, transistor," Synthetic Metals, vol. 155, pp. 662-665, 2005.
[27] M. S F and B. A Deore, "Self-Doped Conducting Polymers," John Wiley & Sons Ltd, 2007.
[28] N. Guernion, R. J. Ewen, K. Pihlainen, N. M. Ratcliffe, and G. C. Teare, "The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities," Synthetic Metals, vol. 126, pp. 301-310, 2002.
[29] L. N. Geng, Y. Q. Zhao, X. L. Huang, S. R. Wang, S. M. Zhang, W. P. Huang, and S. H. Wu, "The preparation and gas sensitivity study of polypyrrole/zinc oxide," Synthetic Metals, vol. 156, pp. 1078-1082, 2006.
[30] X. F. Ma, G. Li, M. Wang, Y. N. Cheng, R. Bai, and H. Z. Chen, "Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies," Chemistry-a European Journal, vol. 12, pp. 3254-3260, 2006.
[31] X. F. Ma, M. Wang, G. Li, H. Z. Chen, and R. Bai, "Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature," Materials Chemistry and Physics, vol. 98, pp. 241-247, 2006.
[32] C. H. Chen and C. H. Lin, "A novel method to fabricate ion-doped microporous polyimide structures for ultra-high sensitive humidity sensing," Sensors and Actuators B-Chemical, vol. 135, pp. 276-282, 2008.
[33] S. Ampuero and J. O. Bosset, "The electronic nose applied to dairy products: a review," Sensors and Actuators B-Chemical, vol. 94, pp. 1-12, 2003.
[34] M. A. Ryan, A. V. Shevade, H. Zhou, and M. L. Homer, "Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring," Mrs Bulletin, vol. 29, pp. 714-719, 2004.
[35] Y. H. Wang, C. Y. Lee, C. H. Lin, and L. M. Fu, "Enhanced sensing characteristics in MEMS-based formaldehyde gas sensors," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 14, pp. 995-1000, 2008.
[36] L. S. Jiang, H. K. Jun, Y. S. Hoh, J. O. Lim, D. D. Lee, and J. S. Huh, "Sensing characteristics of polypyrrole-poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization," Sensors and Actuators B-Chemical, vol. 105, pp. 132-137, 2005.
[37] Y. S. Kim, S. C. Ha, Y. Yang, Y. J. Kim, S. M. Cho, H. Yang, and Y. T. Kim, "Portable electronic nose system based on the carbon black-polymer composite sensor array," Sensors and Actuators B-Chemical, vol. 108, pp. 285-291, 2005.
[38] H. F. Xie, Q. D. Yang, X. X. Sun, J. J. Yang, and Y. P. Huang, "Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration," Sensors and Actuators B-Chemical, vol. 113, pp. 887-891, 2006.
[39] X. M. Dong, R. W. Fu, M. Q. Zhang, B. Zhang, and M. Z. Rong, "Electrical resistance response of carbon black filled amorphous polymer composite sensors to organic vapors at low vapor concentrations," Carbon, vol. 42, pp. 2551-2559, 2004.
[40] J. F. Feller and Y. Grohens, "Evolution of electrical properties of some conductive polymer composite textiles with organic solvent vapours diffusion," Sensors and Actuators B-Chemical, vol. 97, pp. 231-242, 2004.
[41] M. C. Lonergan, E. J. Severin, B. J. Doleman, S. A. Beaber, R. H. Grubb, and N. S. Lewis, "Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors," Chemistry of Materials, vol. 8, pp. 2298-2312, 1996.
[42] B. J. Doleman, M. C. Lonergan, E. J. Severin, T. P. Vaid, and N. S. Lewis, "Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks," Analytical Chemistry, vol. 70, pp. 4177-4190, 1998.
[43] M. E. Koscho, R. H. Grubbs, and N. S. Lewis, "Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites," Analytical Chemistry, vol. 74, pp. 1307-1315, 2002.
[44] J. R. Li, J. R. Xu, M. Q. Zhang, and M. Z. Rong, "Carbon black/polystyrene composites as candidates for gas sensing materials," Carbon, vol. 41, pp. 2353-2360, 2003.
[45] N. S. Lewis, "Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors," Accounts of Chemical Research, vol. 37, pp. 663-672, 2004.
[46] X. M. Dong, Y. Luo, L. N. Xie, R. W. Fu, and M. Q. Zhang, "Conductive carbon black-filled polymethacrylate composites as gas sensing materials: Effect of glass transition temperature," Thin Solid Films, vol. 516, pp. 7886-7890, 2008.
[47] Y. S. Kim, "Influence of carbon black content and film thickness on vapor detection properties of polyvinylpyrrolidone composite sensors," Current Applied Physics, vol. 10, pp. 10-15, 2010.
[48] L. Torsi, M. Pezzuto, P. Siciliano, R. Rella, L. Sabbatini, L. Valli, and P. G. Zambonin, "Conducting polymers doped with metallic inclusions: New materials for gas sensors," Sensors and Actuators B-Chemical, vol. 48, pp. 362-367, 1998.
[49] N. Tsubokawa, "Preparation and properties of polymer-grafted carbon nanotubes and nanofibers," Polymer Journal, vol. 37, pp. 637-655, 2005.
[50] N. Tsubokawa, T. Ogasawara, J. Inaba, and K. Fujiki, "Carbon black/alumina gel composite: Preparation by sol-gel process in the presence of polymer-grafted carbon black and its electric properties," Journal of Polymer Science Part a-Polymer Chemistry, vol. 37, pp. 3591-3597, 1999.
[51] N. Tsubokawa, Y. Shirai, M. Okazaki, and K. Maruyama, "A novel gas sensor from crystalline polymer-grafted carbon black: responsibility of electric resistance of composite from crystalline polymer-grafted carbon black against solvent vapor," Polymer Bulletin, vol. 42, pp. 425-431, 1999.
[52] N. Tsubokawa, M. Tsuchida, J. Chen, and Y. Nakazawa, "A novel contamination sensor in solution: the response of the electric resistance of a composite based on crystalline polymer-grafted carbon black," Sensors and Actuators B-Chemical, vol. 79, pp. 92-97, 2001.
[53] S. G. Chen, X. L. Hu, J. Hu, M. Q. Zhang, M. Z. Rong, and Q. Zheng, "Relationships between organic vapor adsorption behaviors and gas sensitivity of carbon black filled waterborne polyurethane composites," Sensors and Actuators B-Chemical, vol. 119, pp. 110-117, 2006.
[54] S. G. Chen, J. W. Hu, M. Q. Zhang, M. Z. Rong, and Q. Zheng, "Improvement of gas sensing performance of carbon black/waterborne polyurethane composites: Effect of crosslinking treatment," Sensors and Actuators B-Chemical, vol. 113, pp. 361-369, 2006.
[55] S. G. Chen, J. W. Hu, M. Q. Zhang, and M. Z. Rong, "Effects of temperature and vapor pressure on the gas sensing behavior of carbon black filled polyurethane composites," Sensors and Actuators B-Chemical, vol. 105, pp. 187-193, 2005.
[56] S. G. Chen, J. W. Hu, M. Q. Zhang, M. W. Li, and M. Z. Rong, "Gas sensitivity of carbon black/waterborne polyurethane composites," Carbon, vol. 42, pp. 645-651, 2004.
[57] F. Selampinar, U. Akbulut, T. Yalcin, S. Suzer, and L. Toppare, "A Conducting Composite of Polypyrrole .1. Synthesis and Characterization," Synthetic Metals, vol. 62, pp. 201-206, 1994.
[58] F. Selampinar, L. Toppare, U. Akbulut, T. Yalcin, and S. Suzer, "A Conducting Composite of Polypyrrole .2. As a Gas Sensor," Synthetic Metals, vol. 68, pp. 109-116, 1995.
[59] C. K. Tan and D. J. Blackwood, "Interactions between polyaniline and methanol vapour," Sensors and Actuators B-Chemical, vol. 71, pp. 184-191, 2000.
[60] A. A. Athawale, S. V. Bhagwat, and P. P. Katre, "Nanocomposite of Pd-polyaniline as a selective methanol sensor," Sensors and Actuators B-Chemical, vol. 114, pp. 263-267, 2006.
[61] P. C. Lekha, M. Balaji, S. Subramanian, and D. P. Padiyan, "Sensing properties of polyoxomolybdate doped polyaniline nanomaterials for oxidising and reducing volatile organic compounds," Current Applied Physics, vol. 10, pp. 457-467, 2010.
[62] S. Hamilton, M. Hepher, and J. Sommerville, "Polypyrrole materials for detection and discrimination of volatile organic compounds," Sensors and Actuators B-Chemical, vol. 107, pp. 424-432, 2005.
[63] J. Choi, E. J. Park, D. W. Park, and S. E. Shim, "MWCNT-OH adsorbed electrospun nylon 6,6 nanofibers chemiresistor and their application in low molecular weight alcohol vapours sensing," Synthetic Metals, vol. 160, pp. 2664-2669, 2010.
[64] T. Chen, Q. J. Liu, Z. L. Zhou, and Y. D. Wang, "A high sensitivity gas sensor for formaldehyde based on CdO and In2O3 doped nanocrystalline SnO2," Nanotechnology, vol. 19, 2008.
[65] J. Wang, L. Liu, S. Y. Cong, J. Q. Qi, and B. K. Xu, "An enrichment method to detect low concentration formaldehyde," Sensors and Actuators B-Chemical, vol. 134, pp. 1010-1015, 2008.
[66] T. Chen, Q. J. Liu, Z. L. Zhou, and Y. D. Wang, "The fabrication and gas-sensing characteristics of the formaldehyde gas sensors with high sensitivity," Sensors and Actuators B-Chemical, vol. 131, pp. 301-305, 2008.
[67] M. K. Ram, O. Yavuz, and M. Aldissi, "NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite," Synthetic Metals, vol. 151, pp. 77-84, 2005.
[68] K. Hosono, I. Matsubara, N. Murayama, W. Shin, and N. Izu, "The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized polypyrrole films to volatile organic compounds," Thin Solid Films, vol. 484, pp. 396-399, 2005.
[69] X. M. Dong, R. W. Fu, M. Q. Zhang, B. Zhang, J. R. Li, and M. Z. Rong, "A novel sensor for organic solvent vapors based on conductive amorphous polymer composites: carbon black/poly(butyl methacrylate)," Polymer Bulletin, vol. 50, pp. 99-106, 2003.
[70] G. K. Prasad, T. P. Radhakrishnan, D. S. Kumar, and M. G. Krishna, "Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline," Sensors and Actuators B-Chemical, vol. 106, pp. 626-631, 2005.
[71] S. Sharma, C. Nirkhe, S. Pethkar, and A. A. Athawale, "Chloroform vapour sensor based on copper/polyaniline nanocomposite," Sensors and Actuators B-Chemical, vol. 85, pp. 131-136, 2002.
[72] J. J. Miasik, A. Hooper, and B. C. Tofield, "Conducting Polymer Gas Sensors," Journal of the Chemical Society-Faraday Transactions I, vol. 82, 1986.
[73] X. D. Chen, Y. D. Jiang, Z. M. Wu, D. Li, and J. D. Yang, "Morphology and gas-sensitive properties of polymer based composite films," Sensors and Actuators B-Chemical, vol. 66, pp. 37-39, 2000.
[74] E. Danesh, S. R. Ghaffarian, and P. Molla-Abbasi, "A Novel Non-fragile Carbon Nanoparticle-PMMA Conductive Composite Vapor Sensor with High
Sensitivity and Rapid Response," IEEE Sensors 2009 Conference, pp. 291-294, 2009.
[75] Y. L. Luo, Y. X. Liu, and Q. L. Yu, "Influence of low discharge plasma treatment on vapor-induced response of poly(vinylidene fluoride)-carbon black composite thin films," Thin Solid Films, vol. 515, pp. 4016-4023, 2007.
[76] H. Nagase, K. Wakabayashi, and T. Imanaka, "Effect of Doping Anions in Polypyrrole Gas Sensors," Sensors and Actuators B-Chemical, vol. 14, pp. 596-597, 1993.
[77] 蔡佩容, "不同結構碳素導電填料對於以玻璃為基材之電熱膜電熱性質之影響," in 紡織工程所. vol. 碩士 台中市: 逢甲大學, 2006, p. 80.
[78] 林 and 佑, "資源再利用粉狀活性碳吸附氣相氯化汞之研究," in 環境工程研究所. vol. 博士 高雄市: 國立中山大學, p. 226.
[79] 陳皓楨, "微型感測器與致動器之設計與應用," in 機械工程研究所碩士班. vol. 碩士 彰化縣: 大葉大學, 2007, p. 110.
[80] H. Qing-Feng, L. Xian-Cai, L. Xian-Dong, H. Bai-Xing, C. Ju-Qing, and S. Jian, "The surface fractal investigation on carbon nanotubes modified by the adsorption of poly(acrylic acid)," Surface & Coatings Technology, vol. 190, pp. 394-399, 2005.
[81] 劉盈裕, "活性碳於空氣污染防治之應用," in 化學工程所. vol. 碩士 嘉義縣: 國立中正大學, 2006, p. 118.
[82] M. Srinivasarao, D. Collings, A. Philips, and S. Patel, "Three-dimensionally ordered array of air bubbles in a polymer film," Science, vol. 292, pp. 79-83, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.130.13
論文開放下載的時間是 校外不公開

Your IP address is 52.14.130.13
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code