Responsive image
博碩士論文 etd-0617113-132123 詳細資訊
Title page for etd-0617113-132123
論文名稱
Title
NiO-Al2O3二元成份系粉末於水中的雷射脈衝反應與大氣中的早期燒結-粗化-聚簇動力學
Powder behavior upon laser pulses in water and early stage sintering-coarsening-coalescence kinetics of powder in air:A case study of NiO-Al2O3 system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-06
繳交日期
Date of Submission
2013-07-17
關鍵字
Keywords
微觀組織、NiAl2O4粉末、電子顯微鏡、初期燒結粗化聚合動力學、比表面積、相變化、水中雷射脈衝、NiO-A2O3混合粉末、光譜
microstructures, pulsed laser ablation in water, phase change, electron microscopy, sintering-coarsening-coalescence, NiAl2O4 powder, NiO-A2O3 powder mixture, specific surface area
統計
Statistics
本論文已被瀏覽 5721 次,被下載 269
The thesis/dissertation has been browsed 5721 times, has been downloaded 269 times.
中文摘要
本實驗第一部分利用脈衝雷射於水中打擊NiO-Al2O3成份系粉末,並且利用X光繞射、光學/電子顯微鏡與振動/吸收光譜觀察粉末變化,以資比較鎳鋁尖晶石NiAl2O4微米級粉末以及端成份NiO/-Al2O3混合微米級粉末,於水中的碎化或剝熔蝕凝聚效應。結果發現NiAl2O4能分解成奈米氧化鎳及含Ni佈植之γ-Al2O3,並重新由水合原子團凝聚為非晶態,或成核為具有奈米粒徑的表面改質鎳鋁尖晶石顆粒,容易相互聚簇成粗糙球團狀,而且因為脈衝雷射動態快速加熱/冷卻以及奈米效應,使其中鎳鋁尖晶石奈米顆粒累積壓縮內應力高達6 GPa,伴隨Raman/FTIR及吸收光譜變化,使最小能隙值降低至5.3 eV; 而雷射剝蝕不全的鎳鋁尖晶石微米級顆粒,除了表面水合改質,內部也因差排、次晶界、累積非均向內應力,以至於具有光學異向性。至於NiO/ -Al2O3混合微米級粉末於水中受脈衝剝熔蝕,則未能反應成具有尖晶石結構的NiAl2O4化合物,僅能各自形
成奈米級具有岩鹽結構的NiO以及具有類似尖晶石結構的殘留γ-Al2O3,而且NiO奈米顆粒比較容易聚簇成粗糙球團狀。
第二部分為利用NiO/NiAl2O4(1:9莫耳比)的次微米/微米粒徑混合粉末,乾壓後於1300℃~1450℃溫度範圍進行大氣等溫熱處理,藉由電子顯微鏡觀察與BET/BJH N2氣吸脫附遲滯曲線記錄比表面積及孔隙變化動力學,根據不同溫度比表面積折半時間,求得活化能為329±5kJ/mol,其機制是由含量較少、熔點較低、粒徑較小的NiO顆粒主導進行早期粗化聚合所控制,適用於比表面積折損速率等於零的溫度(1147℃)以上。此結論除了說明NiO奈米凝聚顆粒於本論文第一部份比較容易聚簇成粗糙球團狀的現象,也支持NiO/NiAl2O4複合陶瓷燒結製程中關於晶界或晶粒內次微米異相顆粒藉由布朗轉動以調整方位的文獻報導,可以提供一般三維制約情況下次微米顆粒布朗轉動的動力學參考。就工業應用而言,藉適當含量與粒徑NiO粉末之添加,可望調控NiO/NiAl2O4燒結體適當的孔隙度及比表面積,作為催化應用的參考。
Abstract
The first part of this thesis is about pulsed laser ablation of micron size NiAl2O4 spinel powder or NiO-Al2O3 powder mixture in water regarding size/phase changes of the powders. The combined X-ray diffraction and transmission electron microscopic observations indicate that upon laser pulses, the stoichiometric nickel aluminate spinel powder were nanosized and decomposed as atom clusters for further nucleation as Al-doped NiO, Ni-doped -Al2O3 and β-Ni(OH)2 whereas the NiO and Al2O3 powder mixture can also become nanosized β-Ni(OH)2, Al-doped NiO, and Ni-doped -Al2O3 for further composition modification as nonstoichiometric nickel aluminate spinel. The colloidal solution containing the nanosized and hydrated phases in the NiO-Al2O3 system have a bimodal minimum band gap around 5 eV and 3 eV according to UV-visible absorption spectrum for potential photocatalytic applications.
In the second part, an onset sintering-coarsening-coalescence (SCC) event of submicron NiO and micron NiAl2O4 powders (1:9 molar ratio) by isothermal firing in the 1300-1450oC range in air was characterized by N2 adsorption-desorption hysteresis isotherm and scanning electron microscopy. The apparent activation energy of such a rapid SCC process for the composite powders was estimated as 329±5 kJ/mol based on 50% change of specific surface area with accompanied formation of cylindrical pores. This SCC process was controlled by the relatively small-sized and less refractory NiO particles shedding light on their Brownian rotation kinetics at the NiAl2O4 grain boundaries. The minimum temperature of the SCC process, as of concern to optocatalytic applications of NiO/NiAl2O4 composite nanoparticles, is 1147oC based on the extrapolation of steady specific surface area reduction rates to null.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iv
Abstract vi
目錄 viii
表目錄 x
圖目錄 xi
附錄目錄 xv
第一部份 1
壹、前言 1
貳、實驗流程 3
一、粉體製備(NiAl2O4) 3
二、雷射剝蝕PLA 3
參、實驗步驟及方法 4
一、粉體製備 4
二、雷射剝蝕 4
三、X-ray繞射 4
四、UV-Visible吸收光譜 5
五、偏光顯微鏡 5
六、穿透式電子顯微鏡 5
七、拉曼光譜(Raman) 5
八、霍式轉換紅外光光譜(FT-IR) 6
肆、實驗結果 7
一、XRD分析 7
二、拉曼光譜微探分析 8
三、霍式轉換紅外光譜分析(FT-IR) 8
四、UV-Vis吸收光譜分析 8
五、偏光顯微鏡 9
六、穿透式電子顯微鏡觀察 9
伍、討論 12
陸、結論 16
柒、參考文獻 17
第二部分 50
壹、前言 50
貳、實驗流程 53
一、N1S9粉體製備 53
二、N1S9大氣中的早期燒結 53
参、實驗步驟及方法 54
一、N1S9粉體製備 54
二、N1S9大氣中的早期燒結 54
2-1研磨、過篩 54
2-2壓錠 54
2-3熱處理 54
三、BET 測量 54
四、X-ray 繞射 55
五、掃描式電子顯微鏡 55
六、粒徑分析儀(Dynamics Laser Scattering): 55
肆、實驗結果 56
一、BET比表面積 56
二、BJH氮氣吸脫附曲線 56
三、X光繞射分析 56
四、掃描式電子顯微鏡 57
五、EDS X-ray mapping 57
六、粒徑分析 57
伍、討論 58
陸、結論 61
柒、參考文獻 62
參考文獻 References
Amini, M.M., Torkian, L., “Preparation of nickel aluminate spinel by microwave heating,” Mater. Lett. 57 (2002) 639-642.
Arean, C.O., Mentrait, M.P., Lopez, A.J.L., Parra, J.B., “High surface area nickel aluminate spinels prepared by a sol-gel method,” Colloids Surf. A Physicochem. Eng. Aspects 180 (2001) 253-258.
Augustin, C. O., Hema, K., Berchmans, L. John., Selvan, R. Kalai, Saraswathi, R., “Effect of Ce4+ substitution on the structural, electrical and dielectric properties of NiAl2O4 spinel,” Phys. Stat. Sol. 202 (2005) 1017-1024.
Cesteros, Y. P., Salagre, F., Medina, “Preparation and characterization of several high-area NiAl2O4 spinels: study of their reducibility,” Chem. Mater. 12 (2000) 331-335.
Chen, C.H., Huang, C.N., Chen, S.Y., and Shen, P., “Crystallographic shear of polymorphic TiO2 nanocondensates with enhanced Cr2O3 dissolution via pulsed laser ablation,” J. Nanoparticle Res. 13 (2011)3683-3692.
Cui, H., Zayat, M., Levy, D., “A sol-gel route using propylene oxide as a gelation agent to synthesize spherical NiAl2O4 nanoparticles,” J. Non-Cryst. Solids 351 (2005) 210-216.
de Sousa, F.F., de Sousa, H.S.A., Oliveira, A.C., Jr Manoel, C.C., Ayala, A.P., Barros, E.B., Viana, B.C., Filho, J.M., Oliveira, A.C., “Nanostructured Ni-containing spinel oxides for the dry reforming of methane: Effect of the presence of cobalt and nickel on the deactivation behavior of catalysts,” International Journal of hydrogen energy 37 (2012) 3201-3212.
Eto, T., Endo, S., Imai, M., Katayama, Y., Kikegawa, T., “Crystal structure of NiO under high pressure,” Phys. Review B 61(2000)22-26.
Halevy, I., Dragoi, D., Üstündag, E., Yue, A.F., Arredondo, E.H., Hu, J., Somayazulu, M.S., “The effect of pressure on the structure of NiAl2O4,” J. Phys.: Condens. Matter 14 (2002) 10511-10516.
Huang, C.N., Chen, S.Y., and Shen, P., “Condensation and decomposition of NiO-dissolved rutile nanospheres,” J. Phys. Chem. C 111(2007) 3322-3327.
Huang E., “Compression behavior of NiO in a diamond cell,” High Pressure Research 13 (1995) 307-319.
Isobe, T., Daimon, K., Ito, K., Matsubara, T.a, Hikich, Y., Ota, T., “Preparation and properties of Al2O3/Ni composite from NiAl2O4 spinel by in situ reaction sintering method,” Ceram. Int 33 (2007) 1211-1215.
Jeevanandam, P., Koltypin, Yu., Gedanken, A., “ Preparation of nanosized nickel aluminate spinel by a sonochemical method,” Mater. Sci. Eng. B90 (2002) 125-132.
Keiji, D.,Toshihiro, I., Yasuo, H.,Toshitaka, O., “Partial reduction of reactive NiAl2O4 spinel prepared from a sulfate solid solution,” J. Chem. Soc. Japan, Chem. Indus. Chem. 2 (2002) 195-199.
Kingery, W.D., Bowen, H.K., Uhlmann, D.R., “Introduction to Ceramics,” Wiley-Interscience, 2nd Edition, (2006) 690.
Kou, L., Selman, J.R., “Electrical conductivity and chemical diffusivity of NiAl2O4 spinel under internal reforming fuel cell conditions,” J. Appl. Electrochem. 30 (2000) 1433-1437.
Laguna-Bercero, M.A., Sanju´an, M.L., Merino, R.I., “Raman spectroscopic study of cation disorder in poly- and single crystals of the nickel aluminate spinel,” J. Phys.: Condens. Matter 19 (2007) 186217.
Liu, B.S., Au, C.T., “Carbon deposition and catalyst stability over La2NiO4/-Al2O3 during CO2 reforming of methane to syngas,” Appl. Catal. A: General 244 (2003) 181-195.
Liu, L.G., Mernagh, T.P., Lin, C.C., Xu, J.A., Inoue, T. “Raman spectra of hydrous -Mg2SiO4 at various pressures and tempertures,” in Properties of Earth and Planetary Materials at High Pressure and Temperature (eds. Manghnano, M.H. and Yagi, T.) Am. Geophysical Union (1998)523-529.
Li, G., Hu, L., Hill, J.M., “Comparison of reducibility and stability of alumina supported Ni catalysts prepared by impregnation and co-precipitation,” App. Catal. A: General 301 (2006) 16-24.
Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., Pärs, M., “Raman scattering in nanosized nickel oxide NiO,” Journal of Physics: Conference Series 93 (2007) 012039-1-5.
Navrotsky, A., “Energetics of nanoparticle oxides: interplay between surface energy and polymorphism, ” Geochem. Trans. 4 (2003) 34-37.
Navrotsky, A., Ma, C., Lilova, K., Birkner, N., “Nanophase transition metal oxides show large thermodynamic driven shifts in oxidation-reduction equilibria,” Science 330 (2010) 199-201.
Nazemi, M.K., Sheibani, S., Rashchi, F., Gonzalez-DelaCruz, V.M., Caballero, A., “Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis,” Adv. Powder Tech. 110 (2011) 833-838.
Niihara, K., “New design concept of structural ceramic/ceramic nanocomposites,” J. Ceram. Soc. Jpn. 99 (1991) 974-982.
Pettit, F.S., Randklev, E.H., Felten,E.J., “Formation of NiAl2O4 by solid state reaction,” J. Am. Ceram. Soc. 49 (1966) 199-203.
Poirier, J.P., Tarantola, A., “A logarithmic equation of state,” Phys. Earth Planet. Inter. 109 (1998) 1-8.
Pompeo, F., Gazzoli, D., Nichio, N., “Stability improvements of Ni/-Al2O3 catalysts to obtain hydrogen from methane reforming,” Inter. J. Hydrogen Energy 34 (2009) 2260-2268.
Sekino, T., Nakajima, T., Ueda, S., Niihara, K., “Reduction and sintering of a ickel-dispersed-alumina composite and its properties,” J. Am. Ceram. Soc., 80 (1997) 1139-1148.
Üstündag, E., Subramanian, R., Dieckmann, R., Sass, S.L., “In situ formation of metal-ceramic microstructure in the Ni-Al-O system by partial reduction reaction,” Acta Metall. Mater. 43 (1995) 383-389.
Wang S.R., Shen, P. “On the spinel precipitation in Al-doped Ni1-xO,” J. Solid State Chem. 140 (1998a) 38-45.
Wang, S.R., Shen, P. “Rotation-coalescence of confined particles in Ni1-xO/NiAl2O4 composites,” Mater. Sci. Eng. A251 (1998b) 106-112.
Yang, G.W., “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Progress in Materials Science 52 (2007) 648-698.
陳俊男(1996),“退火對NiO-ZrO2-Y2O3及NiO-Al2O3系統中分散向的集合缺陷,形狀與方位變化之影響, ” 國立中山大學85學年度博士論文。
王世榮(1996),“鎳鋁尖晶石晶粒在氧化鎳晶粒中的聚結與轉動,” 國立中山大學85學年度碩士論文。
Brunauer, S., Emmett, P.H., Teller, E., “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60 (1938) 309-319.
Chen, T.J., Lu, J.H., Lu, H.D., Liu, I.L., Shen, P., “Onset coarsening-coalescence kinetics of ZrO2 and less refractory TiO2 nanoparticles: Effect of homologous temperature and phase transformation,” J. Euro. Ceram. Soc. 32(2012)795-805.
Chen, P.L., Chen, I.W., “Sintering of fine oxide powders: II, sintering mechanisms,” J. Am. Cream. Soc., 80 (1997) 637-645.
Ertl, G., Knozinger, H., Weitkamp, J., “Handbook of Heterogeneous Catalysis,” VCH D-69451 Weinheim (1997) 1508.
Kuo L.Y., Shen P. “On the rotation of non-epitaxy crystallites on single crystal substrate,” Surface Science 373 (1997) L350-L356.
Langmuir, I., “The constitution and fundamental properties of solids and liquids,” J. Am. Chem. Soc.,38(1916)2221-2295.
Liu, I.L., Shen, P., “Onset coarsening/coalescence kinetics of γ-type related Al2O3 nanoparticles: implications to their assembly in a laser ablation process,” J. Eur. Ceram. Soc., 29 (2009) 2235-2248.
Masson A., Métois J.J., Kern R. “Migration Brownienne de cristallites sur une surface et relation avec l’épitaxie I. Partie expérimentale” Surface Science 27 (1971) 463-482.
Navrotsky, A., Ma, C., Lilova, K., Birkner, N., “Nanophase transition metal oxides show large thermodynamic driven shifts in oxidation-reduction equilibria,” Science 330 (2010) 199-201.
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., “Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity,” Pure Appl. Chem., 57 (1985) 603-619.
Tikare, V., Braginsky, M., “Numerical simulation of solid-state sintering: I, sintering of three particles,” J. Am. Ceram. Soc., 86 (2003) 49-53.
Wang, S.R., Shen, P., “Rotation-coalescence of confined particles in Ni1-xO/NiAl2O4 composites,” Mater. Sci. Eng. (A) 251 (1998) 106-112.
Yeh, Y., Liu, I.H., Shen, P., “Onset coarsening/coalescence of cobalt oxides in the form of nanoplates vs. equi-axed micron particles,” J. Eur. Ceram. Soc., 30 (2010) 677-688.
陳佩汝(2012),“氧化鎂粉末之早期燒結與水中脈衝雷射碎化”,國立中山大學101學年度碩士論文。
葉奕圻(2008),“氧化鎳及氧化鈷粉末之早期燒結”,國立中山大學97學年度碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code