Responsive image
博碩士論文 etd-0617113-165539 詳細資訊
Title page for etd-0617113-165539
論文名稱
Title
以二氧化鈦及二氧化矽疊層為三五族半導體金氧半電晶體閘極氧化層之特性分析
Characterization of III-V Compound Semiconductor MOSFETs with Titanium Oxide and Silicon Oxide Stacked Layers as Gate Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-07-17
關鍵字
Keywords
二氧化矽、三五族半導體、特性分析、金氧半結構、二氧化鈦
Characterization, Titanium Oxide, Silicon Oxide, III-V Compound Semiconductor, MOS Structures
統計
Statistics
本論文已被瀏覽 5777 次,被下載 0
The thesis/dissertation has been browsed 5777 times, has been downloaded 0 times.
中文摘要
由於三五族半導體(砷化鎵(GaAs),磷化銦(InP))具有高的電子遷移率,所以被廣泛應用在高速元件上。另外,因為TiO2 與GaAs 和InP 擁有良好的晶格匹配特性以及高的介電常數(k = 35-100),所以我們選擇TiO2 作為閘極氧化層薄膜。
GaAs 與InP 因其不穩定的原生氧化層(native oxide)使其擁有高的界面能態密度(interface state density, Dit)而影響界面品質,造成C-V 曲線有拉伸(stretch-out)的現象以及高的漏電流。使用有機金屬化學氣相沈積(ALD)在GaAs 基板上生長之二氧化鈦(TiO2)薄膜雖具有較高的介電常數,但由於TiO2 薄膜是多晶結構,其晶界具有很多缺陷及懸鍵,故其漏電流非常大。
利用硫化銨((NH4)2Sx)水溶液對GaAs 進行表面硫化處理(S-GaAs)可以有效去除原生氧化層以及填補GaAs 表面懸鍵,使其界面品質大幅改善。此外利用來自液相沈積法(Liquid Phase Deposition)生長SiO2 (LPD-SiO2)的溶液的氟離子可鈍化ALD-TiO2 薄膜晶界上之懸鍵及半導體表面,故在漏電流及Dit 方面可大為改善。其漏電流在電場±1.5 MV/cm 分別為2.49 x 10-7 和3.78 x 10-8A/cm2,Dit 可達到4.6 x 1011 cm-2eV-1,介電常數可達到52。因此,氟化的ALD-TiO2 是一種具有高介電常數和低漏電流之薄膜結構。
Abstract
Due to the high electron mobility compard with Si, much attention has been focused on III-V compound semiconductors (gallium arsenide (GaAs) and indium phosphide (InP)) high-speed devices. The high-k material TiO2 not only has high dielectric constant (k =35-100) but has well lattice match with GaAs and InP substrate. Therefore, titanium oxide (TiO2) was chosen to be the gate oxide in this study
The major problem of III-V compound semiconductor is known to have poor native oxide on it leading to the Fermi level pinning at the interface of oxide and semiconductor. The C-V stretch-out phenomenon can be observed and the leakage current is high. The higher dielectric constant of poly-crystalline SiO2 film grown on GaAs can be obtained by atomic layer deposition (ALD). But the high leakage current also occurred due to the grain boundary and defects in the poly-crystalline TiO2 film.
The surface passivation of GaAs with (NH4)2S treatment (S-GaAs) could prevent it from oxidizing after cleaning and improve the interface properties of MOSFET. The fluorine from liquid phase deposited SiO2 solution can passivate the grain boundary of poly-crystalline ALD-TiO2 film and interface state. The high dielectric constant and low leakage current of fluorine passive ALD-TiO2/S-GaAs can be obtained. The leakage current densities are 3.78 x 10-8 A/cm2 and 2.49 x 10-7 A/cm2 at ±1.5 MV/cm, respectively. The Dit is 4.6 x 1011 cm-2eV-1 at the midgap. The dielectric constant can reach 52.
目次 Table of Contents
ACKNOWLEDGMENT i
摘 要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
Introduction 1
1-1 Developments in Gate Dielectric 1
1-2 Properties of TiO2 3
1-3 Comparison of deposition methods of TiO2 4
1-4 Advantages of ALD 5
1-5 Drawback of TiO2 for MOSFETs 6
1-6 Mechanism and the structure model of InP and GaAs with sulfur treatment 7
1-7 ALD Al2O3/TiO2 on (NH4)2S treated III-V compound semiconductor structure 9
1-8 LPD-SiO2/ALD-TiO2 on (NH4)2S treated III-V compound semiconductor structure 10
1-9 Mechanism of Transmission Line Model 12
Experiments 22
2-1 Titanium oxide is prepared by MOCVD and ALD 22
2-1-1 CVD theorem 22
2-1-2 Deposition system of MOCVD and ALD 23
2-1-3 Properties of source materials 25
2-2 Silicon oxide prepared by LPD 26
2-2-1 Deposition system 26
2-2-2 Mechanisms of LPD-SiO2 26
2-2-3 Preparations of deposition solutions 27
2-2-3-1 SiO2 saturated H2SiF6 solution 27
2-2-3-2 Boric acid solution 28
2-3 Deposition procedures of MOS structure 29
2-3-1 GaAs wafer cleaning and sulfidation procedures 29
2-3-2 Preparation of Al2O3/ TiO2 stack films 30
2-3-2-1 Growth parameters of ALD-TiO2 film 30
2-3-2-2 Growth parameters of ALD-Al2O3 film 30
2-3-3 Preparation of SiO2/ TiO2 stack films 31
2-3-4 Aluminum metal and In-Zn alloy cleaning processes 31
2-3-5 Electrodes fabrication 32
2-4 Characterization 32
2-4-1 Physical Properties 32
2-4-2 Electrical Properties 32
Silica-gel (35 g) 39
Characterization 40
3-1 Characterization of ALD Al2O3/TiO2 film on InP 40
3-1-1 TEM cross section of Al2O3/TiO2/S-InP structures 40
3-1-2 I-V characteristics of Al2O3/TiO2 Stacked Dielectrics on (NH4)2S treated InP 40
3-1-3 C-V characteristics of Al2O3/TiO2 Stacked Dielectrics on (NH4)2S treated InP 41
3-2 Characterization of ALD TiO2/Al2O3 film on GaAs 43
3-2-1 TEM cross section of TiO2/Al2O3/S-GaAs structures 43
3-2-2 I-V characteristics of TiO2/Al2O3 Stacked Dielectrics on (NH4)2S treated GaAs 43
3-2-3 C-V characteristics of TiO2/Al2O3 Stacked Dielectrics on (NH4)2S treated GaAs 44
3-3 Characterization of ALD SiO2/TiO2 film on GaAs 46
3-3-1 TEM cross section of SiO2/TiO2/S-GaAs structures 46
3-3-2 I-V characteristics of SiO2/TiO2 Stacked Dielectrics on (NH4)2S treated GaAs 46
3-3-3 C-V characteristics of SiO2/TiO2 Stacked Dielectrics on (NH4)2S treated GaAs 47
3-4 Conclusion 48
Enhancement-mode n-channel MOSFET 60
4-1 Fabrication process of enhancement-mode n-channel MOSFET 60
4-2 Electrical characteristics of enhancement-mode MOSFET 61
4-2-1 Electrical characteristics of enhancement-mode MOSFET with ALD-Al2O3/TiO2 as gate oxide on S-InP 61
4-2-2 Electrical characteristics of enhancement-mode MOSFET with ALD-TiO2/Al2O3 as gate oxide on S-GaAs 63
4-2-3 Electrical characteristics of enhancement-mode MOSFET with LPD-SiO2/ALD-TiO2 as gate oxide on S-GaAs 64
Conclusions 73
References 76
參考文獻 References
[1] http://www.intel.com/technology/mooreslaw/
[2] R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. Kukreja, A. K. Balamurugan, S. Rajagopalan, A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric, “Applied Surface Science, 187, p. 297, 2002.
[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, p 5243, 2001.
[4] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., 16, pp.1838-1849, 2001.
[5] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243, 2001.
[6] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217, 2002.
[7] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[8] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p.316, 1973.
[9] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[10] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[11] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and
MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90,
pp.5896-5900, 1986.
[12] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of
SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[13] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[14] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[15] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[16] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and
M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar
optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998.
[17] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[18] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium dioxide rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032,1995.
[19] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “ Effects of Thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[20] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[21] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[22] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[23] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[24] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[25] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[26] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[27] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[28] R. D. Shannon, and J. A. Pask,” Kinetics of the Anatase-Rutile Transformation” , J. Am. Ceram. Soc., vol. 48, p. 391,1965.
[29] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[30] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[31] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[32] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001.
[33] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[34] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[35] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[36] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[37] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[38] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat.Technol., vol. 155, pp. 141-145, 2002.
[39] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[40] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000.
[41] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U.
Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[42] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[43] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[44] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[45] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[46] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp.47-51,2001
[47] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[48] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[49] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[50] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000.
[51] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[52] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[53] T. Suntola, Mater.” Atomic layer epitaxy” , Sci. Rep. 4, 261 (1989).
[54] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[55] M. Leskela¨, M. Ritala,” Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films 409, 138 (2002)
[56] M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[57] M. Ritala, K. Kukli, A. Rahtu, et al. ,” Atomic layer deposition (ALD): from precursors to thin film structures ”, Science 288 (2000) 319.
[58] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[59] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[60] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003.
[61] M. P. Houng, C. J. Huang, Y. H. Wang, N. F. Wang, and W. J. Chang, “Extremely low temperature formation of silicondioxide on gallium arsenide,” J. Appl. Phys., vol. 82, pp. 5788-5792, 1997.
[62] Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, “S-passivated InP(100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669- 2671, 1992.
[63] C. Engler, J. Dittmar, T. Chasse, “Stability of sulfur induced reconstructions on InP(001) surfaces,” Surface Sci. vol. 495, pp. 55-67, 2001.
[64] M. K. Lee, C. F. Yen, and S. H. Lin, “Electrical Improvements of MOCVD-TiO2 on (NH4)2Sx-Treated InP with Postmetallization Annealing,” J. Electrochem. Soc., vol. 154, no. 10, pp. G229-G233, Aug. 2007.
[65] Y. Q. Wu, Y. Xuan, T. Shen, P. D. Ye, Z. Cheng and A. Lochtefeld, “Enhancement-mode InP n-channel metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett., vol. 91, no. 2, pp. 022108-022108-3, July. 2007.
[66] Y. Hwang, R. E. Herbert, N. G. Rudawski, and S. Stemmer, “Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces,” Appl. Phys. Lett., vol. 96, no. 10, pp. 102910-102910-3, Mar. 2010.
[67] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Tran. Electron Devices, vol. 44, no. 1, pp. 104-109, Jan. 1997.
[68] Steven M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, pp. 111-131, Jan. 2010.
[73] T. Gougousi and J. W. Lacis, “Native oxide consumption during the atomic layer deposition of TiO2 films on GaAs (100) surfaces,” Thin Solid Films, vol. 518, no. 8, pp. 2006-2009, Aug. 2010.
[69] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, no. 8, pp. 1099-1101, Dec. 1996.
[70] R. Iyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B., vol. 6, no. 4, pp. 1174-1179, Jul. 1988.
[71] D. N. Gnoth, D. Wolfframm, A. Patchett, S. Hohenecker, D. R. T. Zahn, A. Leslie, I. T. McGovern, and D. A. Evans, “A comparison of S-passivation of III-V(001) surfaces using (NH4)2Sx and S2C12,” Appl. Surf. Sci., vol. 123-124, pp. 120-125, Jan. 1998.
[72] Z. L. Yuan, X. M. Ding, B. Lai, and X. Y. Hou, E. D. Lu, P. S. Xu, and X. Y. Zhang, “Neutralized (NH4)2S solution passivation of III–V phosphide surfaces,” Appl. Phys. Lett., vol. 73, no 20, pp. 2977-2979, Nov. 1998.
[73] H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, “Low-temperature InP/GaAs wafer bonding using sulfide-treated surface,” Appl. Phys. Lett., vol. 88, no. 6, pp. 061104-061104-3, Feb. 2006.
[74] Shinya Morikita, Tomoyuki Motegi and Hideaki Ikoma , “Improved Electrical Characteristics of Al2O3/InP Structure by Combination of Sulfur Passivation and Forming Gas Annealing,” Jpn. J. Appl. Phys. vol. 38, no. 12B, pp. L1512-L1514, Dec. 1999.
[75] Y. T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, and J. C. Lee,” Effects of fluorine incorporation into HfO2 gate dielectrics on InP and In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors,” Appl. Phys. Lett.,96, 253502 (2010).
[76] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys,” 23rd International Conference on IPRM 2011.
[77] A. Paccagnella, A. Callegari, J. Batey, and D. Lacey, “Properties and thermal stability of the SiO2/GaAs interface with different surface treatments,” J. Appl. Phys., vol. 57, pp. 258–260, 1990.
[78] A. Callegari, D. K. Sadana, D. A, Buchana, A. Paccagnella, E. D. Marshall, M. A. Tischler, and M. Norcoft, “Properties of SiO2/Si/GaAs structures formed by solid phase epitaxy of amorphous Si on GaAs,” Appl. Phys. Lett., vol. 58, pp. 2540-2542, 1991.
[79] X. Liu, X. Y. Chen, J. Yin, Z. G. Liu, J. M. Liu, X. B. Yin, G. X. Chen, and M. Wang, “Epitaxial growth of TiO2 thin films by pulsed laser deposition on GaAs(100) substrates,” J. Vac. Sci. Technol. A, vol. 19, pp. 391-393, 2001.
[80] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise
in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and
Experiment.
[81] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Ch. 8, Wiley, New York, (1981) [80] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise
in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and
Experiment.
[82] M. K. Lee, J. J. Huang, and T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. Solid-State Lett., vol. 8, pp. F8-F11, 2005.
[83] M. Heiblum, M. I. Nathan, and C. A. Chang, “Characteristics of AuGeNi ohmic contacts to GaAs,” Solid-State Electron., vol. 25, pp. 185–195, Mar. 1982
[84] O. Aina,W. Katz, B. J. Baliga, and K. Rose, “Low-temperature sintered AuGe/GsaAs ohmic contact,” J. Appl. Phys., vol. 53, pp. 777–780, Jan. 1982.
[85] S. Wu, D. Wang, and K. Heime, “An improved model to explain ohmic contact resistance of n-GaAs and other semiconductors,” Solid-State Electron., vol. 29, pp. 489–494, May. 1986.
[86] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol., pp. 512, 2000.

[87] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[88] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[89] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient
on the electrical-properties of TiO2 thin-film by metalorganic
chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[90] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface
control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),”
Thin Solid Film, vol. 377, pp. 766-771, 2000.
[91] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J.
Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[92] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67,1998.
[93] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin film by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[94] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon (100),” Thin Solid Film, vol. 377, pp.766-771, 2000.
[95] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[96] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[97] Yukinobu Shinoda and Takeshi Kobayashi, “Anomalous inversion channel formation in enhancement-mode InP metal-insulator semiconductor field effect transistors,” J. Appl. Phys., vol. 53, no. 10, pp.7033-7038, Oct. 1982.
[98] Y. T. Chen, H. Zhao, J. H. Yum, Y. Wang, and Jack C. Lee, “Metaloxide-
semiconductor field-effect-transistors on indium phosphide using HfO2 and silicon passivation layer with equivalent oxide thickness of 18 Å,” Appl. Phys. Lett., vol. 94, no. 21, pp. 213505- 213505-3, May 2009.
[99]. K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken and H. Maes, “ Impact of weak Fermi-level pinning on the correct interpretation of III-V MOS C-V and G-V characteristics,” Microelectronic Engineering, vol. 84, no.9-10, pp. 2146-2149, May 2007.
[100]. Y. T. Chen, H. Zhao, J. H. Yum, Y. Wang, and J. C. Lee, Appl. Phys. Lett. 94, 213505 (2009).
[101]. H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, E. Garfunkel, and T. Gustafsson, Phys. Status Solidi C 7, 260 (2010).
[102] S. C. Sun, and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[103] J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, “Fabrication of depletion-mode GaAs MOSFET with a selective oxidation process by using metal as the mask,” IEEE Electron Device Lett., vol. 22, pp. 2-4, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.206.12.31
論文開放下載的時間是 校外不公開

Your IP address is 18.206.12.31
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code