Responsive image
博碩士論文 etd-0617113-221422 詳細資訊
Title page for etd-0617113-221422
論文名稱
Title
由氧化鋅奈米結構轉變為氧化鋅薄膜
Transformation from ZnO Nanostructures to ZnO Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-07-19
關鍵字
Keywords
水溶液沉積法、氧化鋅薄膜、氮化鎵基板、藍寶石基板
aqueous solution deposited, Zinc oxide thin film, sapphire substrate, GaN substrate
統計
Statistics
本論文已被瀏覽 5655 次,被下載 0
The thesis/dissertation has been browsed 5655 times, has been downloaded 0 times.
中文摘要
本研究利用水溶液沉積法此種較低成本且低溫的製程將氧化鋅薄膜成長於濺鍍氧化鋅結核層的氮化鎵和藍寶石基板。再藉由笑氣的低溫回火提高氧化鋅薄膜的紫外光激發,並改善結晶構造,減少缺陷。
在物性方面,我們利用掃描式電子顯微鏡探討薄膜表面型態、切面型態和薄膜厚度,利用X射線光電子能譜儀探討元素比例和表面特性結晶品質,最後再利用霍爾量測了解薄膜型態、電阻率和載子遷移率。在光學性質方面,我們利用微螢光光譜量測探討吸收光譜和原子原子空缺。
Abstract
In this study, we prepare the Zinc oxide (ZnO) thin film with aqueous solution deposited (ASD) on GaN and sapphire substrates by sputtered ZnO nucleation layer. Annealing with N2O at 300°C for 1 hour to increase the UV emission and decrease the defects.
The physical characteristics, the morphology and thickness of ZnO films we obtained by the analyses of field emission scanning electron microscopic (FE-SEM) . The physical properties were characterized by X-ray diffraction (XRD). The film types, resistivity and the mobility were characterized by Hall measurement. In optical properties, the photoluminescence spectrometer (Micro-PL) was used to measure the photoluminescence characteristics and the vacancies.
目次 Table of Contents
論文審定書 i
ACKNOWLEDGMENT ii
摘 要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
1.Introduction 1
1-1 Background of ZnO 2
1-2 Growth mechanism in ASD-ZnO 2
1-3 Application of Zinc Oxide ZnO 3
1-4 Principle of thin-film deposition 6
1-5 Advantage of ASD 8
2.Experiments 12
2-1 Substrate cleaning procedures 12
2-1-1 Cleaning of GaN substrate procedures 12
2-1-2 Cleaning of sapphire substrate procedures 12
2-1-3 Cleaning of sillicon substrate procedures 13
2-1-4 Cleaning of glass substrate procedures.........................................13
2-2 ZnO nucleation layer prepared by RF sputtering 14
2-2-1 Sputtering technique 14
2-2-2 RF sputtering 15
2-2-3 ZnO nucleation layer prepared with ZnO target by RF sputtering 16
2-3 ASD deposition system 16
2-4 ZnO film deposition 27
2-5 Characterization 27
2-5-1 Physical properties 27
2-5-2 Electrical properties 27
2-5-3 Optical properties 27
3.Characterization of ASD-ZnO films 27
3-1 Comparison of ZnO nanorod array on GaN substrate without sputtered ZnO 27
3-1-1 FE-SEM morphologies for ZnO nanorod array on GaN substrate without sputtered ZnO 27
3-1-2 Micro-PL of ZnO nanorod array on GaN substrate without sputtered ZnO 27
3-2 Transformation of ZnO nanorod array into film on GaN substrate 28
3-2-1 FE-SEM morphologies for transformation of ZnO nanorod array into film on GaN substrate 27
3-2-2 Micro-PL spectrum for ASD-ZnO thin film on GaN substrate e 27
3-2-3 XRD spectrum for ASD-ZnO thin film on GaN substrate 27
3-3 ZnO nanorod array on sputtered ZnO/sapphire substrate at different temperature 29
3-4 Transformation of ZnO nanorod array into film on sapphire substrate. 30
3-4-1 FE-SEM morphologies for transformation of ZnO nanorod array into film on sapphire substrate 30
3-4-2 Micro-PL spectrum for ASD-ZnO thin film on sapphire substrate 30
3-4-3 XRD spectrum for ASD-ZnO thin film on sapphire substrate 31
3-4-4 Hall measurement of ZnO film on sapphire substrate 31
3-5 Comparison of ZnO nanorod array on different substrates. 31
3-5-1 FE-SEM morphologies for ZnO nanorod array on different
substrates 32
3-5-2 XRD spectrum for ZnO nanorod array on different substrates 32
4.Conclusions 63
References 64
參考文獻 References
Chapter 1
[1] S. M. Sze, Semiconductor devices physics and technology 2nd edition.
[2] Y. Zhang, C. S. Whelan, R. Leoni, P. F. Marsh, W. E. Hoke, J. B. Hunt, C.
M. Laighton, and T. E. Kazior, “40-Gbit/s OEIC on GaAs substrate
through metamorphic buffer technology,” IEEE electron device letters,
vol. 24, no. 9, pp. 529-531, 2003.
[3] E. Cohen, Y. Betser, B. Sheinman, S. Cohen, V. Sidorov, A. Gavrilov, and
D.Ritter, 2005 international conference on indium phosphide and related
materials.
[4] H. M. Kim, T. W. Kang, and K. S. Chung, “Nanoscale ultraviolet-light
emitting diodes using wide-bandgap gallium nitride nanorods,” Adv.
Mater., Vol. 15, no. 7-8, pp. 567-569, 2003.
[5] R. F. Service, “Will UV lasers beat the blues?,” Science, vol. 276, pp.
895-895, 1997.
[6] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O.
Mason, “Chemical and structural factors governing transparent
conductivity in oxides,” J. Electroceram., vol. 13, pp. 167-175, 2004.
[7] S. C. Minne, S. R. Manalis, and C. F. Quate, “Parallel atomic force
using cantilevers with integrated piezoresistive sensors and
integrated piezoelectric actuators,” Appl. Phys. Lett., vol. 67, pp.
3918-3920, 1995.
[8] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yia, “Metalorganic
vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., vol. 80, pp. 4232-4234, 2002.
[9] Y. B. Li, T. Bando, T. Sato, and K. Kurashima, “ZnO nanobelts grown on Si substrate”Appl. Phys. Lett., vol 81, pp 144-146, 2002.
[10] B. D. Tao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Appl. Phys. Lett., vol. 81, pp. 757-759, 2002.
[11] X. Y. Kong and Z. L. Wang, ” Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, ” Nano Lett., vol. 3, pp. 1625-1631, 2003.
[12] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, pp. 464-466, 2003.
[13] I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B, vol. 69, pp. 245401-4, 2004.
[14] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, ” Low
Temperature synthesis of flowerlike ZnO nanostructures by
cetyltrimethylammonium bromide-assisted hydrothermal process,” J.
Phys. Chem. B, vol. 108, pp. 3955-3958, 2004.
[15] S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in
processing and properties of ZnO,” Propress in materials 9 science, vol. 50, pp.
294-340, 2005.
[16] Sophie Peulon and Daniel Lincot, “Mechanistic study of cathodic
electrodeposition of zinc oxide and zinc hydroxychloride films from
oxygenated aqueous zinc chloride solutions,” J. Electrochem. Soc., vol. 145, pp.
864-874, 1998.
[17] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B, vol. 22, no. 3, pp. 932-948, 2004.
[18] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater., vol. 4, no. 1, pp. 42-46, 2005.
[19] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, “ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes,” Small, vol. 3, no. 4, pp. 568-572, 2007.
[20] J. Bao, M. A. Zimmer, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett., vol. 6, no. 8, pp. 1719-1722, 2006.
[21] R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys.Lett., vol. 85, no. 24, pp. 6004-6006, 2004.
[22] L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, r. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, “Self-aligned, gated arrays of individual nanotube and nanowire emitters,” Nano Lett., vol. 4, no. 9, pp. 1575-1579, 2004.
[23] H. K. Yadav, K. Sreenivas, and V. Gupta, “Enhanced response from metal/ZnO
bilayer ultraviolet photodetector,” Appl. Phys. Lett., vol. 90, no. 17, pp. 172113, 2007.
[24] R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl.Phys. Lett., vol. 90, no. 24, pp. 243106, 2007.
[25] S. Seki, Y. Sawaka, and T. Nishide, ”Indium-tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride,” Thin Solid Films, vol. 388, no. 1-2, pp. 22-26, 2001.
[26] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. J. Marks, “Indium tin oxidealternatives – high work function transparent conducting oxides as anodes for organic light-emitting diodes,” Adv. Mater., vol. 13, no. 19, pp. 1476-1480, 2001.
[27] J. Owen, M. S. Son, K.-H. Yoo, B. D. Ahn, and S. Y. Lee, “Organic photovoltaic
devices with Ga-doped ZnO electrode,” Appl. Phys. Lett., vol. 90, no. 3, pp. 033512, 2007.
[28] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung,J.-Y.Hwang, and D.-S. Seo,12 “Transparent conductive Al-dped ZnO films for liquid crystal displays,” J. Appl. Phys., vol. 99, no. 12, pp. 124505, 2006.
[29] S. Kandasamy, W. Wlodarski, A. Holland, S. Nakagomi, and Y.Kokubun, ”Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor,” Appl. Phys. Lett., vol. 90, no. 6, pp. 064103, 2007.
[30] P. D. Batista and M. Mulato, ”ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143508, 2005.
[31] Z. Fan and J. G. Lu, ”Gate-refreshable nanowire chemical sensors,” Appl. Phys. Lett., vol. 86, no. 12, pp. 123510, 2005.
[32] S. K. Hazra and S. Basu, ”Hydrogen sensitivity of ZnO p-n homojunctions,” Sens. Actuators B, vol. 117, no. 1, pp. 177-182, 2006.
[33] G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, ”Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B, vol. 124, no. 1, pp. 187-191, 2007.
[34] G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, ”Enhanced gas sensing of Au nanocluster-doped or –coatedzinc oxide thin films,” J. Appl. Phys., vol. 102, no. 8, pp. 083103, 2007.
[35] S. C. Navale, V. Ravi, I. S. Mulla, S. W. Gosavi, and S. K.Kulkarni, ”Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO,” Sens. Actuators B, vol. 126, no. 2, pp.382-386, 2007.
[36] H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R.Zhu, ”Nano-crystalline
Cu-doped ZnO thin film gas sensor for CO,” Sens. Actuators B, vol. 115, no. 1, pp. 247-251, 2006.
[37] S. M. Sze, Semiconductor devices physics and technology 2nd edition.
[38] S. J. Pearton, D. P. Nortona, K. Ip, Y. W. Heo and T. Steiner, Progress in Materials Science, 50 (2005)


Chapter 2
[1] J. Goldstein, D. Newbury, D. joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael, scanning electron microscopy and X-ray microanalysis
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.173.43.215
論文開放下載的時間是 校外不公開

Your IP address is 54.173.43.215
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code