Responsive image
博碩士論文 etd-0617114-102905 詳細資訊
Title page for etd-0617114-102905
論文名稱
Title
類鑽碳薄膜電阻式記憶體之特性研究
Study on Diamond-Like Carbon Resistive Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-10
繳交日期
Date of Submission
2014-07-21
關鍵字
Keywords
類鑽碳、電阻式記憶體、加成反應
Resistance Random access memory, diamond-like carbon, hydrogenating
統計
Statistics
本論文已被瀏覽 5664 次,被下載 60
The thesis/dissertation has been browsed 5664 times, has been downloaded 60 times.
中文摘要
由最近的研究發現當SiO2摻雜碳作為電阻式記憶體(Resistive random-access memory, RRAM)中間層時具有非常好的RRAM性能,且其阻態之改變有異於一般金屬阻絲切換機制。因此本論文以PECVD成長之類鑽碳(DLC)薄膜作為RRAM的主動層,探討其阻態切換機制。從I-V量測結果之電流傳導機制擬合發現相較於C:SiO2 RRAM,DLC RRAM在LRS多了Frenkle-Poole傳導機制,在HRS多了Schottky傳導機制。由於DLC薄膜中並無氧離子,故其RRAM之阻態切換有別於其他金屬氧化物RRAM以氧離子氧化還原作為電阻切換機制。本論文提出一個氫離子切換機制理論模型,由一對照實驗中,當Pt電極吸附大量的氫離子,從I-V電性分析結果發現其HRS的阻值有明顯的增加,說明了更多的氫離子將C=C鍵打開形成高阻態的C-H鍵。並利用雙層的Pt/DLC/HfO2/TiN堆疊的RRAM結構來驗證此模型,發現DLC在靠近Pt電極端時,其DLC中阻絲切換發生在Pt電極端,故得證其切換機制是氫離子的氧化還原作用。而相異的Pt/HfO2/DLC/TiN RRAM堆疊結構,其阻絲切換發生於靠近TiN電極的DLC,其阻態切換機制是因氧離子對碳π鍵的拉伸造成阻態的改變。由變溫量測I-V實驗中,發現以氫離子作為切換機制的DLC RRAM,其HRS的阻值隨著溫度的提升而下降,由其生成熱為正值,表示隨著溫度增加,π鍵增加而σ鍵減少,造成電流上升;而相對以氧離子作為主要切換機制的Pt/HfO2/DLC/TiN RRAM得生成能為負值,表示隨著溫度增加,甲基官能基減少而羧基官能基增加,因此造成電流下升。由實驗結果,印證了DLC RRAM的阻態切換機制模型。
Abstract
In recent study, C doped SiO2 was found as a dielectric layer exhibiting a very good RRAM performance. The resistive switching mechanism of C:SiO2 RRAM are different from the other kinds of metal oxide filament like device switching by oxygen ions. Therefore, this thesis applied PECVD DLC film as the dielectric layer to study the RRAM, to discuss its resistive switching characteristics. From the I-V fitting of DLC RRAM has found that comparing to C:SiO2 RRAM there are two new conduction mechanism of Frenkle-Poole emission in Low Resistance State and Schottky emission in High Resistance State. Since there is no oxygen ions existing in DLC film, the resistive switching mechanism of DLC RRAM should be different from which due to oxygen ions in metal oxides RRAM. In this thesis a hydrogen ions model is proposed to explain the resistive switching mechanism. For comparison, an additional experiment, in which a DLC RRAM is fabricated with adding hydrogen during sputtering Pt electrode to make extra more hydrogen ions deposited in Pt electrode. From IV analysis is found that the resistance of HRS increased significantly indicating that more hydrogen ions reacted with carbon induced higher-impedance state by more C-H bonds transformed from C=C bonds. Furthermore, a double-stacked RRAM structure of Pt/DLC/HfO2/TiN is fabricated to check this model. The I-V analysis shows that the resistive switching of RRAM takes place in DLC layer near Pt electrode, and it is suggested that the switching mechanism is due to the reaction of oxidation-reduction by hydrogen ions. While an opposite stack structure RRAM with Pt/HfO2/DLC/TiN reveals a resistive switching mechanism taking place near TiN electrode, and the switching mechanism is suggested the HRS due to the oxygen ions stretching the π bond between two carbon atoms causing the enlarging the length of π bond. From the experiments varying by temperature from 300~360 K, it is found that HRS resistance decreases as the temperature increases, This result shows a hydrogenating reaction occurred with endothermic reaction with the positive formation energy. On contrast, the Pt/HfO2/DLC/TiN RRAM shows an exothermic reaction with negative formation energy for the oxygen adsorption model of switching mechanism. From these experiments, the hydrogen model is consistent with the switching mechanism of DLC RRAM.
目次 Table of Contents
中文摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
縮寫對照 xiii
符號表 xiiii
第一章概論 1
1-1前言 1
1-2研究目的與動機 2
第二章文獻回顧 3
2-1 記憶體簡介 3
2-1-1 電阻式記憶體 4
2-2絕緣體載子傳導機制 7
2-2-1歐姆傳導(Ohmic Conduction) 7
2-2-2 熱離子發射(Thermionic Emission) 8
2-2-3 普爾-法蘭克發射(Poole-Frenkel Emission) 9
2-2-4穿隧(Tunneling) 10
2-2-5 空間電荷限制電流(Space Charge Limit Current, SCLC) 12
2-2-6 跳耀傳導(Hopping Conduction)[18] 12
2-3類鑽碳(Diamond-Like Carbon, DLC) 15
第三章實驗設備與原理 16
3-1 電漿輔助化學氣相沉積(Plasma-Enhanced Chemical Vapor Deposition, PE-CVD) 16
3-2多靶磁控濺鍍系統( Multi-Target Sputter) 16
3-3 N&K薄膜特性分析儀(N & K analyzer) 17
3-4 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer, FT-IR) 17
3-5 拉曼光譜儀(Raman) 18
3-6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 19
3-7 半導體電性量測系統 19
第四章元件製作與分析 20
4-1類鑽碳電阻式記憶體元件製作 20
4-1-1 DLC、Pt電極及HfO2薄膜備製 21
4-1-2 單層與雙層DLC RRAM備製 22
4-2 DLC材料分析 23
4-2-2 DLC之 XPS光譜分析 23
4-2-2 DLC之FTIR光譜分析 24
4-2-3 DLC拉曼光譜分析 25
4-3 DLC RRAM電性分析 26
4-3-1 單層DLC RRAM 的Forming Process 26
4-3-2 單層DLC RRAM的Reset與Set Process 27
4-3-3 單層DLC RRAM 元件之Size effect 28
4-3-4 單層DLC RRAM 元件之Retention量測 29
4-3-5 單層DLC RRAM 元件之Endurance量測 30
第五章 單層DLC RRAM傳導機制分析與氫離子模型 32
5-1 單層DLC RRAM電流傳導機制的擬合 32
5-2 單層DLC RRAM傳導機制模型[34] 34
第六章氫離子模型之RRAM阻態切換機制實驗與討論 36
6-1氫對DLC RRAM的特性影響 36
6-1-1 Pt與H: Pt電極的DLC RRAM電流特性與傳導機制比較 36
6-1-2 Pt與H: Pt電極的DLC RRAM傳導機制模型比較 38
6-2不同堆疊結構RRAM元件探討DLC阻態切換機制 40
6-2-1 雙層結構DLC RRAM的電性量測與電流機制擬合 40
6-2-2 DLC RRAM的hopping傳導機制活化能量測 43
6-2-3雙層結構DLC RRAM的傳導機制模型 46
6-3溫度對DLC RRAM的特性影響 48
6-3-1 單層結構與雙層結構DLC RRAM的變溫電性量測 48
第七章結論 54
參考文獻 55
參考文獻 References
[1] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application," Nano letters, vol. 9, pp. 1636-1643, 2009.
[2] K.-C. Chang, R. Zhang, T.-C. Chang, T.-M. Tsai, J. Lou, J.-H. Chen, et al., "Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices," Electron Device Letters, IEEE, vol. 34, 2013.
[3] K. Srinivasu, K. Chandrakumar, and S. K. Ghosh, "Quantum chemical studies on hydrogen adsorption in carbon-based model systems: role of charged surface and the electronic induction effect," Physical Chemistry Chemical Physics, vol. 10, pp. 5832-5839, 2008.
[4] 劉傳璽 and 陳進來, 半導體元件物理與制程: 理論與實務: 五南圖書出版股份有限公司, 2006.
[5] M. H. Lankhorst, B. W. Ketelaars, and R. Wolters, "Low-cost and nanoscale non-volatile memory concept for future silicon chips," Nature materials, vol. 4, pp. 347-352, 2005.
[6] J. F. Scott and C. A. P. De Araujo, "Ferroelectric memories," Science, vol. 246, pp. 1400-1405, 1989.
[7] S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, "Progress and Outlook for MRAM Technology," IEEE Transactions on Magnetics, vol. 35, pp. 2814-2819, 1999.
[8] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, et al., "Metal–oxide RRAM," Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
[9] H. Kim, P. C. McIntyre, C. O. Chui, K. C. Saraswat, and S. Stemmer, "Engineering chemically abrupt high-k metal oxide∕ silicon interfaces using an oxygen-gettering metal overlayer," Journal of applied physics, vol. 96, pp. 3467-3472, 2004.
[10] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, et al., "Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories," Applied Physics Letters, vol. 92, p. 232112, 2008.
[11] D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nature nanotechnology, vol. 5, pp. 148-153, 2010.
[12] J. Gibbons and W. Beadle, "Switching properties of thin NiO films," Solid-State Electronics, vol. 7, pp. 785-790, 1964.
[13] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, 2008.
[14] T. Hickmott, "Low‐Frequency Negative Resistance in Thin Anodic Oxide Films," Journal of Applied Physics, vol. 33, pp. 2669-2682, 2004.
[15] I. Baek, M. Lee, S. Seo, M.-J. Lee, D. Seo, D.-S. Suh, et al., "Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses," in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 587-590, 2004.
[16] K. Kinoshita, T. Tamura, H. Aso, H. Noshiro, C. Yoshida, M. Aoki, et al., "New model proposed for switching mechanism of ReRAM," in Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006. 21st, pp. 84-85, 2006.
[17] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd edition. New Jersey: John Wiley & Sons, 2007.
[18] D. Ielmini and Y. Zhang, "Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices," Journal of Applied Physics, vol. 102, pp. 054517, 2007.
[19] J. Robertson, "Diamond-like amorphous carbon," Materials Science and Engineering: R: Reports, vol. 37, pp. 129-281, 2002.
[20] 余樹楨, 晶體之結構與性質: 渤海堂, 1993.
[21] A. Yacoby, "Graphene: Tri and tri again," Nature Physics, vol. 7, pp. 925-926, 2011.
[22] C. Wang and K. Ho, "Structure, dynamics, and electronic properties of diamondlike amorphous carbon," Physical Review Letters, vol. 71, pp. 1184-1187, 1993.
[23] U. Schürmann, H. Takele, V. Zaporojtchenko, and F. Faupel, "Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering," Thin Solid Films, vol. 515, pp. 801-804, 2006.
[24] D. A. Skoog and D. M. West, Principles of instrumental analysis: Saunders College Philadelphia, 1980.
[25] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2006.
[26] Q.-Y. Nie, C.-S. Ren, D.-Z. Wang, and J.-L. Zhang, "A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure," Applied Physics Letters, vol. 93, p. 011503, 2008.
[27] I. H. Tan, M. Ueda, K. Kostov, P. A. P. Nascente, and N. R. Demarquette, "Polymer Treatment by Plasma Immersion Ion Implantation of Nitrogen for Formation of Diamond-Like Carbon Film," Japanese Journal of Applied Physics, vol. 43, pp. 6399-6404, 2004.
[28] S. Xuguang, "The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy," Spectrochim Acta A Mol Biomol Spectrosc, vol. 62, pp. 557-64, Nov. 2005.
[29] S. Shin, J. Jang, S. H. Yoon, and I. Mochida, "A Study on The Effect of Heat Treatment on Functional Groups of Pitch Based Activated Carbon Fiber Using FTIR," Carbon, vol. 35, pp. 1739-1743, 1997.
[30] C. Tarducci, E. Kinmond, J. Badyal, S. Brewer, and C. Willis, "Epoxide-functionalized solid surfaces," Chemistry of materials, vol. 12, pp. 1884-1889, 2000.
[31] J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, "Highly luminescent silicon nanocrystals with discrete optical transitions," Journal of the American Chemical Society, vol. 123, pp. 3743-3748, 2001.
[32] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, pp. 14095-14107, 1999.
[33] J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, "Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells," Biophys J, vol. 90, pp. 648-56, 2006.
[34] Y. J. Chen, H. L. Chen, T. F. Young, T. C. Chang, T. M. Tsai, K. C. Chang, et al., "Hydrogen induced redox mechanism in amorphous carbon resistive random access memory," Nanoscale Res Lett, vol. 9, p. 52, 2014.
[35] 廖彥智, 有機化學(上): 高立出版社, 1999.
[36] R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. v. Hemert, and J. M. v. Ruitenbeek, "Measurement of the conductance of a hydrogen molecule," Nature, vol. 419, pp. 906-909, 2002.
[37] K. Y. Yiang, W. J. Yoo, Q. Guo, and A. Krishnamoorthy, "Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method," Applied Physics Letters, vol. 83, p. 524, 2003.
[38] C. Kittel and P. McEuen, Introduction to solid state physics vol. 8: Wiley New York, 1986.
[39] B. Bergersen and M. Stott, "The effect of vacancy formation on the temperature dependence of the positron lifetime," Solid State Communications, vol. 7, pp. 1203-1205, 1969.
[40] F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms: Springer New York, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code