Responsive image
博碩士論文 etd-0617114-165713 詳細資訊
Title page for etd-0617114-165713
論文名稱
Title
不同立體規則度於側鏈發光型高分子之光致發光影響
Tacticity Effect on Photoluminescent Polymers Featuring Pendant Fluorophores
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-15
繳交日期
Date of Submission
2014-07-30
關鍵字
Keywords
薄膜、聚集、規則度、光致發光、立體規則度高分子
Stereoregular Polymer, Thin film, Aggregation, Photoluminescence, Tacticity
統計
Statistics
本論文已被瀏覽 5770 次,被下載 63
The thesis/dissertation has been browsed 5770 times, has been downloaded 63 times.
中文摘要
本研究藉由控制P(4-FlSty)和PNNEPS的立體規則性來探討高分子立體規則性對光致放光行為的影響。此外,調控不同的高分子規則度和化學官能基的修飾也將會被探討其現象。在P(4-FlSty)系統中,PL圖譜有多個放光峰,藉由生命週期螢光儀來證明其具不同立體規則性之高分子包含單體放光和聚集放光。在稀薄溶液狀態,由於出色的溶解度使不同立體規則度具有近乎相同的放光行為。在THF和H2O的混合溶液中,隨著水的量逐漸增加放光強度有先減弱在增強的趨勢,其原因在π-π interaction和restriction of intramolecular rotation (RIR)競爭下的結果。此外比起P(4-FlSty)15 (rr=98%, mm=0%)和P(4-FlSty)12 (rr=62%, mm=19%),P(4-FlSty)14 (rr=29%, mm=61%)展現特別明顯的excimer放光。在固體薄膜狀態,不同立體規則度高分子在光致發光行為上的差異將更加明顯。在UV光照射下,薄膜的放光由紫色轉變為青藍色。在PNNDPS系統中,隨著水的量增加,低規則度高分子如PNNDPS9.8 (rr=53%, mm=24%)和PNNDPS11.9 (rr=62%, mm=22%)由於RIR效應使得放光強度逐漸增加。相反的,高規則度的高分子如PNNDPS12 (rr=83%, mm=7%)放光強度隨著水的量增加而減弱,原因由ultraviolet-visible吸收圖譜證明其在聚集的過程中有嚴重的H-aggregation產生。此外PNNDPS12 (rr=83%, mm=7%)具有高立體規則度,我們在THF/water = 3/7狀態下由穿透式電子顯微鏡找到有結晶現象,並且對應有些微的放光增強,確立了此高分子具有aggregation-caused quenching (ACQ)和crystallization-induce emission enhancement (CIEE)兩種性質。由以上兩個系統一系列的分析,證實對於高分子的光致發光行為而言立體規則度確實扮演重要的角色,這在設計光致放光高分子於現實生活應用上是一個全新的概念。
Abstract
A series of stereoregular polymers including atactic, syndiotactic and isotactic poly(9,9-Dibutyl-2-(4-vinylphenyl)-9H-fluorene) [P(4-FlSty)] and poly 4(N,N-diphenyl)styrene [PNNDPS] were synthesized to exam tacticity effect on photoluminescence (PL). In P(4-FlSty) systems, the PL spectra reveal multiple PL emissive bands including monomeric and excimer emissions evidenced by life-time spectroscopy. In dilute solution of THF, the similar emissive behavior for the stereoregular polymers is found to the excellent chain mobility of polymer chains. In THF/water mixtures, the PL intensity of the P(4-FlSty) initially decreases and then dramatically increase with the increases of the water contents. This variation might result from the competition between the π-π interaction and the restriction of intramolecular rotation (RIR) effect. Also, the P(4-FlSty)14 (rr=29%, mm=61%) exhibit the dramatic increase of excimer emission in comparison with the P(4-FlSty)15 (rr=98%, mm=0%) and P(4-FlSty)12 (rr=62%, mm=19%). Furthermore, this difference is further enlarged as the stereoregular polymers in film state, revealing the emissive colors from indigo to cyan with the increase of the isotacticity under UV illumination. For the PNNDPS system, the PL spectra of the stereoregular polymers reveal three PL emissive bands involving monomeric and excimer emissions in dilute solution. In aggregation solutions, the PL spectra display enhanced PL emission for PNNDPS9.8 (rr=53%, mm=24%) and PNNDPS11.9 (rr=62%, mm=22%) as the water content increases in the THF/water mixtures, due to the RIR effect. Notably, with the increase of the water contents, the PL emission decreases significantly in the PNNDPS12 (rr=83%, mm=7%) due to the formation of H-aggregation evidenced by ultraviolet-visible (UV-Vis) spectra. Owing to the very high syndiotacticity in the PNNDPS12 (rr=83%, mm=7%), we found that the crystallization may induce the enhancement of PL emission as THF/water = 3/7, evidenced by selected area electron diffraction (SAED) of transmission electron microscopy (TEM). Consequently, the syndiotacticity of the chain configuration results in aggregation-caused quenching (ACQ), whereas the crystallization may give rise to crystallization-induce emission enhancement (CIEE) in the PNNDPS system. We thus suggest that the PNNDPS12 (rr=83%, mm=7%) possesses dual ACQ-active and CIEE-active properties. Therefore, the tacticity for stereoregular polymers with pendant flourophores indeed plays an important role on the PL behavior, which may provide a novel concept in the design of photoluminescent polymers for applications.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract  iv
Contents vi
List of Figures viii
List of Tables xvii
Chapter 1 Introduction 1
 1.1 Principle of Photoluminescence 1
 1.2 Excimer and Aggregation Emissions 4
 1.3 H-aggregation and J-aggregation 8
 1.4 Self-assembly on Photoluminescence 9
  1.4.1 Aggregation-Caused Quenching (ACQ) 9
  1.4.2 Twist Intramolecular Charge Transfer (TICT) 10
  1.4.3 Aggregation-Induced Emission (AIE) 12
  1.4.4 Crystallization-Induce Emission (CIE) 15
  1.4.5 Aggregation-Enhanced Excimer Emission (AEEE) 17
  1.4.6 Fluorescence Decay Dynamics 18
 1.5 Photoluminescence of Polymeric Materials 20
  1.5.1 Main-Chain conjugated polymers 20
  1.5.2 Side-Chain conjugated polymers 24
 1.6 Stereoregular Polymers 30
 Chapter 2 Objectives 34
 Chapter 3 Experimental Section 36
 Chapter 4 Results & Discussion 42
 4.1 Photoluminescent P(4-FlSty) system 41
  4.1.1 Thermal Stability 41
  4.1.2 Thermal Behavior 43
  4.1.3 Photoluminescence of the Stereoregular P(4-FlSty) Polymers in Dilute Solution 45
  4.1.4 Photoluminescence of the Stereoregular P(4-FlSty) Polymers in Aggregation Solution 51
  4.1.5 PL Behavior of Stereoregular P(4-FlSty) Polymers in Thin Film 66
  4.1.6 Tacticity Effect on PL Behavior of Stereoregular P(4-FlSty) Polymers with Pendant Fluorophores 69
 4.2 Photoluminescent PNNDPS system 74
  4.2.1 Thermal Stability 74
  4.2.2 Thermal Behavior 76
  4.2.3 Photoluminescence of the Stereoregular PNNDPS Polymers in Dilute Solution  79
  4.2.4 Photoluminescence of the Stereoregular PNNDPS Polymers in Aggregation Solution 81
  4.2.5 PL Behavior of Stereoregular PNNDPS Polymers in Thin Film 93
  4.2.6 Tacticity Effect on PL Behavior of Stereoregular PNNDPS Polymers with Pendant Fluorophores 95
 Chapter 5 Conclusions 99
 Chapter 6 References 101
參考文獻 References
Chapter 6: References
1. M. Grätzel and J. K. Thomas, in Modern Fluorescence Spectroscopy, edited by E. L. Wehry (Plenum, New York, 1976), Vol. 2, p. 169.
2. Birks, J. B. Excimers Rep. PRog. Phys. 1975, 38, 903.
3. Birks, J. B.; Christophorou, L. G. Spectrochim. Acta. 1963, 19, 401.
4. Birks, J. B.; Lumb, M. D.; Munro, I. H. Proc. R. Soc. London 1963, 275, 575.
5. Wilhelm, M.; Zhao, C.-L.; Wang, Y.; Xu, R.; Winnik, M. A. Macromolecules 1981, 24, 1033.
6. Jhaveri, S. B.; Beinhoff M.; Hawker, C. J.; Carter, K. R.; Sogah, D. Y. ACS nano 2008, 2, 719.
7. Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2008, 47, 575.
8. Birks, J. B. Photophysics of Aromatic Molecules Wiley, London, 1970
9. Robertson, J. M.; White, J. G. J. Chem. Soi. 1947, 358.
10. Camerman, A.; Trotter, J. Acta. Cryst. 1965, 18, 636.
11. Herz, A. H. Adv. Colloid Interface Sci. 1977, 8, 237.
12. Mӧbius, D. Adv. Mater. 1995, 7, 437.
13. Egorov, V. V. J. Chem. Phys. 2002, 116, 3090.
14. Knoester, J. Int. J. Photoenergy 2006, 5, 4.
15. Förster, Th.; Kasper, K. Z. Phys. Chem. (Munich) 1954, 1, 275.
16. Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds CRC, Boca Raton, 1992.
17. Turro, N. J. Modern Molecular Photochemistry University Science Books, Valley, M. 1991.
18. Li, X. C.; Moratti, S. C. in Photonic Polymer Systems Dekker, M. New York, 1998.
19. Hong, Y.; Lam, W. Y.; Tang, B. Z. Chem. Comm. 2009, 4332.
20. Liu, J.; Lam, W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym. 2009, 19, 249.
21. Thomas III, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
22. Belletête, M.; Bouchard, J.; Leclerc, M.; Durocher, G. Macromolecules 2005, 38, 880.
23. Menon, A.; Galvin, M.; Walz, K. A.; Rothberg, L. Synth. Met. 2004, 141, 197.
24. Chen, C.-T. Chem. Mater. 2004, 16, 4389.
25. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810.
26. Jakubiak, R.; Collison, C. J.; Wan, W. C.; Rothberg, L. J. Phys. Chem. A 1999, 103, 2394.
27. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439.
28. Lemmer, U.; Heun, S.; Mahrt, R. F.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E. O.; Müllen, K.; Bassler, H. Chem. Phys. Lett. 1995, 240, 373.
29. Slavík, J. Fluorescence Microscopy and Fluorescent Probes, Plenum, New York, 1996.
30. Valeur, B. Molecular Fluorescence: Principle and Applications Wiley-VCH, Weinheim, 2002
31. Advanced Concepts in Fluorescence Sensing, ed. Geddes, C. D.; Lakopwicz, J. R.; Springer; Norwell 2005.
32. Fluorescence Sensors and Biosensors, ed. Thompson; R. B. CRC, Boca Raton, 2006.
33. Tan, W. H.; Wang, K. M.; Drake, T. J. Curr. Opin. Chem. Biol. 2004, 8, 547.
34. Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed. 2006, 45, 4562.
35. Borisov, S. M.; Wolfbeis, O. S. Chem. Rev. 2008, 108, 423.
36. Grimsdale, A. C.; Müllen, K. Adv. Polym. Sci. 2008, 212, 1.
37. Wong, W.W. H.; Holmes, A. B. Adv. Polym. Sci. 2008, 212, 85.
38. Boudreault, P. L. T.; Blouin, N.; Leclerc, M. Adv. Polym. Sci. 2008, 212, 99.
39. Sanchez; J. C.; Trogler, W. C. Macromol. Chem. Phys. 2008, 209, 1527.
40. Zhang, Y.; Liu, B.; Cao, Y. Chem.–Asian J. 2008, 3, 739.
41. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
42. Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D. J. Mater. Chem. 2001, 11, 2974.
43. Gustafsson, G.; Gao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, C.; Heeger, A. J. Nature 1992, 357, 477.
44. Wang, P. W.; Liu, Y. J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv. Mater. 1996, 8, 237.
45. Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Frechet, J. M. J. J. Am. Chem. Soc. 2000, 122, 12, 385.
46. Baskar, C.; Lai, H. Y.; Valiyaveettil, S. Macromolecules 2001, 34, 6255.
47. Halls, J. J. M.; Walls, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
48. Szczesna, M.; Galas, E.; Bielecki, S. J. Mol. Catal. B 2000, 111, 671.
49. Heeger, P. S.; Heeger, A. J. Proc. Natl. Acad. Sci. USA 1999, 96, 12, 219.
50. Schenning, A.; Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 4489.
51. Hecht, S.; Frechet, J. M. J. Angew. Chem. Int. Ed. 2001, 40, 74.
52. Scherf, U. J. Mater. Chem. 1999, 9, 1853.
53. Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430.
54. Z. J. Zhao, S. M. Chen, J. W. Y. Lam, Z. M Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y .G. Ma, H. S. Kwok and B. Z. Tang, Pyrene-Substituted Ethenes: Aggregation-Enhanced Excimer Emission, J. Mater. Chem. 2011, 21, 7210–7216.
55. Y. Ren, J.W.Y. Lam, Y. Q. Dong, B. Z. Tang and K. S. Wong, Enhanced Emission Efficiency and Excited State Lifetime Due to Restricted Intramolecular Motion in Silole Aggregates, J. Phys. Chem. B 2005, 109, 1135–1140.
56. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J.-L.; Lӧgdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
57. Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
58. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colinari, N.; Heeger, A. J. Nature 1992, 357, 477.
59. Bharathan, J.; Yang, Y. Appl. Phys. Lett. 1998, 72, 2660.
60. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Strum, J. C. Appl.Phys. Lett. 1998, 72, 519.
61. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.
62. Innis, P. C.; Masdarolomoor F.; Kane-Maguire, L. A. P.; Forster, R. J.; Keyes, T. E.; Wallace, G. G. J. Phys. Chem. B 2007, 111, 12738.
63. Li, Y.; Vamvounis, G.; Holdcroft, S. Macromolecules 2002, 35, 6900.
64. Bunz, U. H. F.; Imhof, J. M.; Bly, R. K.; Bangcuyo, C. G.; Rozanski, L.; Vanden Bout, D. A. Macromolecules 2005, 38, 5892.
65. Samuel, I. D. W.; Rumble, G.; Friend, R. H.; In Primary Photoexcitations in Conjugated Polymers: Molecular Excitation versus Semiconductor Band Model; Sariciftci, N. S., Ed.; World Scientific Publishing Co.: Singapore, 1997.
66. Science 2002, 295, 2313-2556. Special issue on Supramolecular Chemistry and Self-Assembly. In particular: Lehn, J. M. Science 2002, 295, 2400-2402.
67. Yarari, S. S.; Bovey, F. A.; Lumry, R. Nature 1963, 200, 242.
68. Vala, M. T.; Haebig, J.; Rice, S. A. J. Chem. Phys. 1965, 43, 886.
69. Longworth, J. W. Biopolymers 1966, 4, 1131.
70. Gebler, D. D.; Wang, Y.Z.; Fu, D, -K.; Swager, T. M.; Epstein, A. J. J. Chem. Phys.1998.
71. Johnson, P. C.; Offen, H. W. J. Chem. Phys. 1971, 55, 2945.
72. Klӧpffer, W. J. Chem. Phys. 1969, 50, 2337.
73. Klӧpffer, W.; Bunsenges, Ber. Chem. Phys. 1969, 73, 864.
74. Yin, X. Y.; Ye, C.; Ma, X.; Chen, E. Q.; Qi, X. Y.; Duan, X. F.; Wan, X. H.; S. Cheng, Z. D.; Zhou, Q. F. J. Am. Chem. Soc. 2003, 125, 6854.
75. Nakano, T.; Yade, T. J. Am. Chem. Soc. 2003, 125, 15474.
76. Rathore, R.; Abdelwahed, S. H.; Guzei, I. A. J. Am. Chem. Soc. 2003, 125, 8712.
77. Lin, H. –C.; Chu, H. –C.; Lee, Y. –H.; Hsu, S. –J.; Yang, P. –J.; Yabushita, A. J. Phys. Chem. B 2011, 115,8845.
78. Hong, J. L.; Lai, C. T. J. Phys. Chem. B 2010, 114, 10302.
79. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708.
80. Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem. Soc. 1957, 79, 2975.
81. Lam, J. W. Y.; Tang, B. Z.; J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 2607.
82. Dong, Y.; Lam, J. W. Y.; Peng, H.; Cheuk, K. K. L.; Kwok, H. S.; Tang, B. Z. Macromolecules 2004, 37, 6408.
83. Lam, J. W. Y.; Tang, B. Z. Acc. Chem. Res. 2005, 38, 745.
84. Lam, J. W. Y.; Dong, Y.; Law, C. C. W.; Dong, Y. Q.; Cheuk, K. K. L.; Lai, L. M.; Li, Z.; Sun, J.; Chen, H.; Zheng, Q.; Kwok, H. S.; Wang, M.; Feng, X.; Shen, J.; Tang, B. Z. Macromolecules 2005, 38, 3290.
85. Lam, J. W. Y.; Dong, Y.; Kwok, H. S.; Tang, B. Z. Macromolecules 2006, 39, 6997.
86. Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z. J. Phys. Chem. B 2008, 112, 9281.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code