Responsive image
博碩士論文 etd-0617115-105917 詳細資訊
Title page for etd-0617115-105917
論文名稱
Title
(1) 鉑奈米粒子作為仿生氧化酶與過氧化酶應用於偵測肝素;(2) 探討聚二烯丙基二甲基氯化銨對於4-硝基苯酚催化反應的影響
(1)Platnium Nanoparticles as Oxidase and Peroxidase Mimic and Their Application in Heparin Sensing;(2) Role of Poly(diallyldimethylammonium chloride) in the Catalytic Reduction of 4-Nitrophenol by Metal Nanoparticle
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-07-23
關鍵字
Keywords
鉑奈米粒子、魚精蛋白、肝素、聚二烯丙基二甲基氯化銨、氧氣還原反應、4-硝基苯酚
Pt-NPs, Protamine, Oxygen Reduction Reaction, Heparin, 4-Nitrophenol, PDDA
統計
Statistics
本論文已被瀏覽 5821 次,被下載 43
The thesis/dissertation has been browsed 5821 times, has been downloaded 43 times.
中文摘要
一、鉑奈米粒子作為仿生氧化酶與過氧化酶應用於偵測肝素在本篇研究中, 利用一鍋合成的方法合成鉑奈米粒子,其尺寸約為6±1 nm,將鉑奈米粒子利用氧氣作為介質來催化2,2-聯氮-二(3-乙基-苯並噻唑-6-磺酸)二銨鹽 (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, ABTS)、3,3’,5,5’-四甲基聯苯胺 (3,3',5,5'-Tetramethylbenzidine, TMB)和多巴胺(Dopamine);接著利用TMB作為受質來計算Km及Vmax,其值分別為0.9 mM和0.0042 μM/s,為了證實鉑奈米粒子是藉由氧氣當作介質催化ABTS、TMB、Dopamine,我們使用循環伏安法偵測鉑奈米粒子氧氣還原反應,確實看到明顯氧氣還原之訊號峰,且電流值可達到毫安培,由此可以證實,鉑奈米粒子對於氧氣還原反應具有高催化性,並利用旋轉環盤電極驗證此氧氣還原反應是經過四個電子轉移所造成,在氧氣的環境下具有催化TMB及ABTS及Dopamine的能力,因此推測Citrate-Pt NPs具有氧化酶的特性。接著利用合成之鉑奈米粒子結合魚精蛋白(Protamine)當作探針偵測肝素(Heparin),先將魚精蛋白與鉑奈米粒子反應後再加入肝素,由於肝素會與吸附在鉑奈米粒子上之魚精蛋白結合,使鉑奈米粒子催化TMB能力下降,可利用TMB吸收值下降對肝素作偵測,線性範圍為1~10 nM、偵測極限為0.3 nM,並且此偵測方法可成功地應用在人類血漿樣品中最後,最後,我們在過氧化氫的存在下催化TMB及ABTS及Dopamine,證實了Citrate-Pt NPs具有過氧化酶的特性。
二、探討聚二烯丙基二甲基氯化銨對於4-硝基苯酚催化反應的影響
硝基芳香族化合物被廣泛用於製造藥品、顏料、染劑、塑料、農藥、爆裂物和工業溶劑,然而這些化合物釋放在環境中具高危險性,並對人類、動物及植物具有潛在的毒性,由於4-硝基苯酚(4-Nitrophenol)在環境中很穩定且不容易被生物降解,已被美國環境保護局(EPA)列為優先污染物(Priority pollutant),因此需要開發用於處理水中硝基芳香族化合物的環境清潔技術。本篇研究利用兩種帶相反電荷的聚二烯丙基二甲基氯化銨(Poly(diallyldimethylammonium chloride),PDDA)及Citric acid 作為反應試劑,合成出金、鉑、鈀奈米粒子,再結合硼氫化鈉(NaBH4)對4-Nitrophenol進行催化還原反應,形成4-Aminophenol,由TEM圖中可以看到兩種反應試劑所合成出來的奈米粒子尺寸都差不多,且由實驗結果可以看到利用PDDA合成之金、鉑、鈀奈米粒子催化4-硝基苯酚之反應速率常數分別為0.6 min-1、1.8 min-1、3.4 min-1,而利用Citric acid所合成之金、鉑、鈀奈米粒子催化4-硝基苯酚之反應速率 常數分別為0.1 min-1、0.03 min-1、0.6 min-1,由數據可以看出利用PDDA所合成之奈米粒子其催化效果都較Citric acid所合成出來之奈米粒子好,推測聚二烯丙基二甲基氯化銨在這裡扮演拉電子基的角色,可以儲存電子,而金屬奈米粒子會透過分子間電荷傳遞的方式將電子傳遞給表面帶正電的聚二烯丙基二甲基氯化銨,誘使金屬奈米粒子帶正電荷,當加入硼氫化鈉時,由於金屬奈米粒子表面帶正電荷所以較容易吸收帶負電的硼氫化鈉到金屬奈米粒子表面,再加入4-Nitrophenol時,因為4-Nitrophenol在鹼性環境中會形成帶負電的4-Nitrophenolate,而金屬奈米粒子表面上具有帶正電荷的聚二烯丙基二甲基氯化銨,所以較容易將帶負電的4-Nitrophenolate吸收過來,結合這兩個原因使聚二烯丙基二甲基氯化銨所合成之金屬奈米粒子催化4-Nitrophenol還原成4-Aminophenol的速度較快,這樣一來可以將PDDA所合成之奈米粒子用在硝基芳香族化合物的環境清潔技術中。
Abstract
(a) Platnium Nanoparticles as Oxidase and Peroxidase Mimic and Their
Application in Heparin Sensing
In our first study, the Pt-NPs were synthesized using an one-pot method and were used to catalyze 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 3,3',5,5'-Tetramethylbenzidine (TMB), and dopamine under oxygen. The size of Pt- NPs are approximately 6±1 nm. By using TMB as substrate, the Km and Vmax were obtained 0.9 mM and 0.0042 μM/s, respectively. In order to investigative the process of electrons transfer and whether oxygen is the medium for catalytic reaction on Pt-nanoparticles based system, rotating ring disk electrode and cyclic voltammetry were perform. The results prove that under aerobic conditions, Pt-NPs have highly catalytic activity for TMB, ABTS, and dopamine of redox reaction which occur via four electrons transfer. Therefore, we suggest that Citrate-Pt NPs have the properties of oxidase. We further apply Pt-NPs cooperated with potamine as probe to detect Heparin via the decreased absorbance of TMB which is due to absorption of heparin and potamine linking in Pt-NPs, resulting in the decreased catalytic activity of Pt-NPs for TMB. Linear range is between 1 and 10 nM, detection limit is 0.3 nM. This promising method is successfully applied in detecting Heparin in human serum. Finally, we prove that Citrate-Pt NPs have the properties of peroxidase via the catalytic reaction of TMB, ABTS, and dopamine when hydrogen peroxide exist.






(b) Role of Poly(diallyldimethylammonium chloride) in the Catalytic Reduction
of 4-Nitrophenol by Metal Nanoparticle
Nitroaromatic compounds are widely used in the manufacture of pharmaceuticals、dyes、plasticides、pesticides and explsives, they are dangerous and toxicity for environment. 4-Nitrophenol belong to aromatic nitro-compounds. Due to the stability, 4-Nitrophenol is considered as priority pollutant by EPA. Therefore, it is necessary to develop technology for 4-Nitrophenol in water. In our second study, Au, Pt, Pd NPs were synthesized using PDDA or citric acid. According to the TEM, the size of nanoparticles synthesized by PDDA or citric acid are almost the same. Further, these nanoparticles cooperated with NaBH4 to reduce 4-Nitrophenol and generate 4-Aminophenol. The results reveal that the reaction rates of Au、Pt、Pd NPs synthesized by PDDA were 0.6 min-1、1.8 min-1、3.4 min-1, respectively. Comparatively, the reaction rates of Au、Pt、Pd NPs synthesized by citric acid were 0.1 min-1、0.03 min-1、0.6 min-1, respectively. The catalytic efficiency using Au、Pt、Pd NPs synthesized by PDDA are better than using Au、Pt、Pd NPs synthesized by citric acid. The likely reason is that the positive surface of metal nanoparticles which occurs through electron-transfer processes from metal nanoparticles to PDDA. The positive surface of metal nanoparticles are easier to absorb NaBH4 and 4-Nitrophenolate which is generated by 4-Nitrophenol under alkaline environment. This technology is fast and we can further apply metal nanoparticles synthesized by PDDA for reduction of aromatic nitro-compounds.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
摘要 iii
目錄 vii
圖次 x
表次 xvi
縮寫表 xvii
第一章、 鉑奈米粒子作為仿生氧化酶與過氧化酶應用於偵測肝素 1
一、 前言 1
1-1. 酵素簡介 1
1-2. 氧化酶 1
1-3. 過氧化酶 2
1-4. 仿生酵素 2
1-5. 肝素簡介 8
1-6. 偵測肝素的方法 9
1-7. 研究動機 13
二、 實驗部份 14
2-1. 實驗藥品 14
2-2. 儀器裝置 19
2-3. 樣品配製方法 21
2-4. 實驗過程 22
三、 結果與討論 26
3-1. 鉑奈米粒子作為仿生氧化酶催化受質 26
3-2. 鉑奈米粒子之動力學探討 35
3-3. 鉑奈米粒子催化氧氣還原反應 37
3-4. 鉑奈米粒子應用於自來水中有機染料的降解 39
3-5. 感測肝素機制的建立 40
3-6. 探討不同濃度魚精蛋白對偵測肝素之影響 41
3-7. 利用鉑奈米粒子催化TMB定量肝素 42
3-8. 利用鉑奈米粒子催化TMB定量肝素之選擇性探討 46
3-9. 人類血漿樣品中肝素的定量 49
3-10. 鉑奈米粒子作為仿生過氧化酶催化受質 51
四、 結論 60
第二章、 探討聚二烯丙基二甲基氯化銨對於4-硝基苯酚催化反應的影響 62
一、 前言 62
1-1. 4-Nitrophenol簡介 62
1-2. 催化還原4-Nitrophenol的機制 62
1-3. 利用奈米材料催化還原4-Nitrophenol的例子 64
1-4. 聚二烯丙基二甲基氯化銨的簡介 66
1-5. 聚二烯丙基二甲基氯化銨的應用 66
二、 實驗部份 71
2-1. 實驗藥品 71
2-2. 儀器裝置 71
2-3. 樣品配製方法 73
2-4. 實驗過程 75
三、 結果與討論 77
3-1. 4-Nitrophenol催化機制探討 77
3-2. 利用Citrate-Au NPs及PDDA-Au NPs催化4-Nitrophenol 80
3-3. 利用Citrate-Pt NPs及PDDA-Pt NPs催化4-Nitrophenol 88
3-4. 利用Citrate-Pd NPs及PDDA-Pd NPs催化4-Nitrophenol 96
四、 結論 104
第三章、 參考文獻 105
參考文獻 References
1. Shoji, E.; Freund, M. S., Potentiometric Sensors Based on the Inductive Effect on the pKa of Poly(aniline):  A Nonenzymatic Glucose Sensor. J. Am. Chem. Soc. 2001, 123 , 3383-3384.
2. Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotech. 2007, 2 , 577-583.
3. Jv, Y.; Li, B.; Cao, R., Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46 , 8017-8019.
4. Liu, M.; Zhao, H.; Chen, S.; Yu, H.; Quan, X., Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chem. Commun. 2012, 48 , 7055-7057.
5. Zheng, C.; Zheng, A.-X.; Liu, B.; Zhang, X.-L.; He, Y.; Li, J.; Yang, H.-H.; Chen, G., One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem. Commun. 2014, 50 , 13103-13106.
6. Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M., Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. Int. Ed. 2009, 48 , 2308-2312.
7. Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C., Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. ACS Nano. 2010, 4 , 7451-7458.
8. He, W.; Liu, Y.; Yuan, J.; Yin, J.-J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y.; Guo, Y., Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011, 32 , 1139-1147.
9. Bromfield, S. M.; Wilde, E.; Smith, D. K., Heparin sensing and binding - taking supramolecular chemistry towards clinical applications. Chem. Soc. Rev. 2013, 42 , 9184-9195.
10. Warkentin, T. E.; Levine, M. N.; Hirsh, J.; Horsewood, P.; Roberts, R. S.; Gent, M.; Kelton, J. G., Heparin-Induced Thrombocytopenia in Patients Treated with Low-Molecular-Weight Heparin or Unfractionated Heparin. N. Engl. J Med. 1995, 332 , 1330-1336.
11. Arepally, G. M.; Ortel, T. L., Heparin-Induced Thrombocytopenia. N. Engl. J Med. 2006, 355 , 809-817.
12. Murray, D. J.; Brosnahan, W. J.; Pennell, B.; Kapalanski, D.; Weiler, J. M.; Olson, J., Heparin detection by the activated coagulation time: A comparison of the sensitivity of coagulation tests and heparin assays. J Cardiothorac Vas Anesth. 1997, 11 , 24-28.
13. Despotis, G. J.; Levine, V.; Joist, J. H.; Joiner-Maier, D.; Spitznagel, E., Antithrombin III During Cardiac Surgery: Effect on Response of Activated Clotting Time to Heparin and Relationship to Markers of Hemostatic Activation. Anesth Analg. 1997, 85 , 498-506.
14. Raymond, P. D.; Ray, M. J.; Callen, S. N.; Marsh, N. A., Heparin monitoring during cardiac surgery. Part 1: Validation of whole-blood heparin concentration and activated clotting time. Perfusion 2003, 18 , 269-76.
15. Maurer, J.; Haselbach, S.; Klein, O.; Baykut, D.; Vogel, V.; Mäntele, W., Analysis of the Complex Formation of Heparin with Protamine by Light Scattering and Analytical Ultracentrifugation: Implications for Blood Coagulation Management. J. Am. Chem. Soc. 2011, 133 , 1134-1140.
16. Ander, B.; Karlsson, A.; Öhrlund, Å., Determination of heparin on intraocular lens surfaces by ion chromatography. J Chromatogr. A. 2001, 917 , 105-110.
17. Volpi, N.; Maccari, F.; Suwan, J.; Linhardt, R. J., Electrophoresis for the analysis of heparin purity and quality. ELECTROPHORESIS 2012, 33 , 1531-1537.
18. Crespo, G. A.; Afshar, M. G.; Bakker, E., Reversible Sensing of the Anticoagulant Heparin with Protamine Permselective Membranes. Angew. Chem. Int. Ed. 2012, 51 , 12575-12578.
19. Seo, Y.; Andaya, A.; Leary, J. A., Preparation, Separation, and Conformational Analysis of Differentially Sulfated Heparin Octasaccharide Isomers Using Ion Mobility Mass Spectrometry. Anal. Chem. 2012, 84 , 2416-2423.
20. Wang, M.; Zhang, D.; Zhang, G.; Zhu, D., The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group. Chem. Commun. 2008, 37, 4469-4471.
21. Pu, K.-Y.; Liu, B., Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing. Adv. Funct. Mater. 2009, 19 , 277-284.
22. Zhan, R.; Fang, Z.; Liu, B., Naked-Eye Detection and Quantification of Heparin in Serum with a Cationic Polythiophene. Anal. Chem. 2010, 82 , 1326-1333.
23. Dai, Q.; Liu, W.; Zhuang, X.; Wu, J.; Zhang, H.; Wang, P., Ratiometric Fluorescence Sensor Based on a Pyrene Derivative and Quantification Detection of Heparin in Aqueous Solution and Serum. Anal. Chem. 2011, 83 , 6559-6564.
24. Cao, R.; Li, B., A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun. 2011, 47 , 2865-2867.
25. Yan, H.; Wang, H.-F., Turn-on Room Temperature Phosphorescence Assay of Heparin with Tunable Sensitivity and Detection Window Based on Target-Induced Self-Assembly of Polyethyleneimine Capped Mn-Doped ZnS Quantum Dots. Anal. Chem. 2011, 83 , 8589-8595.
26. Fu, X.; Chen, L.; Li, J.; Lin, M.; You, H.; Wang, W., Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosens. Bioelectron. 2012, 34 , 227-231.
27. He, W.; Wu, X.; Liu, J.; Hu, X.; Zhang, K.; Hou, S.; Zhou, W.; Xie, S., Design of AgM Bimetallic Alloy Nanostructures (M = Au, Pd, Pt) with Tunable Morphology and Peroxidase-Like Activity. Chem. Mat. 2010, 22 , 2988-2994.
28. He, W.; Wu, X.; Liu, J.; Zhang, K.; Chu, W.; Feng, L.; Hu, X.; Zhou, W.; Xie, S., Formation of AgPt Alloy Nanoislands via Chemical Etching with Tunable Optical and Catalytic Properties. Langmuir 2010, 26 , 4443-4448.
29. Bond, G. C., The origins of particle size effects in heterogeneous catalysis. Surf. Sci. 1985, 156, Part 2 , 966-981.
30. Wilson, O. M.; Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M., Effect of Pd Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol. J. Am. Chem. Soc. 2006, 128 , 4510-4511.
31. Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A., Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110 , 13393-8.
32. Bigall, N. C.; Härtling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmüller, A., Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties. Nano Lett. 2008, 8 , 4588-4592.
33. Bisaglia, M.; Mammi, S.; Bubacco, L., Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 2007, 282 , 15597-605.
34. Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M., Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy. 2010, 35 , 9349-9384.
35. Wang, D.-W.; Su, D., Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci. 2014, 7 , 576-591.
36. Dhakshinamoorthy, A.; Navalon, S.; Alvaro, M.; Garcia, H., Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem 2012, 5 , 46-64.
37. Kuo, C.-Y.; Tseng, W.-L., Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma. Chem. Commun. 2013, 49 , 4607-4609.
38. Hung, S.-Y.; Tseng, W.-L., A polyadenosine–coralyne complex as a novel fluorescent probe for the sensitive and selective detection of heparin in plasma. Biosens. Bioelectron. 2014, 57 , 186-191.
39. Narayanan, K. B.; Sakthivel, N., Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Biores Tech 2011, 102 , 10737-10740.
40. Herrera-Melián, J. A.; Martín-Rodríguez, A. J.; Ortega-Méndez, A.; Araña, J.; Doña-Rodríguez, J. M.; Pérez-Peña, J., Degradation and detoxification of 4-nitrophenol by advanced oxidation technologies and bench-scale constructed wetlands. J ENVIRON MANAG. 2012, 105 , 53-60.
41. Lai, T.-L.; Yong, K.-F.; Yu, J.-W.; Chen, J.-H.; Shu, Y.-Y.; Wang, C.-B., High efficiency degradation of 4-nitrophenol by microwave-enhanced catalytic method. J Hazard Mater. 2011, 185 , 366-372.
42. Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M., A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater. 2012, 201–202 , 250-259.
43. Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M., Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114 , 8814-8820.
44. Aditya, T.; Pal, A.; Pal, T., Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51 , 9410-9431.
45. Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q., Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework. J. Am. Chem. Soc. 2011, 133 , 1304-1306.
46. Cheng, Z.; He, B.; Zhou, L., A general one-step approach for in situ decoration of MoS2 nanosheets with inorganic nanoparticles. J. Mater. Chem. A 2015, 3 , 1042-1048.
47. Gu, X.; Qi, W.; Xu, X.; Sun, Z.; Zhang, L.; Liu, W.; Pan, X.; Su, D., Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 2014, 6 , 6609-6616.
48. Yao, H.-B.; Wu, L.-H.; Cui, C.-H.; Fang, H.-Y.; Yu, S.-H., Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction. J. Mater. Chem. 2010, 20 , 5190-5195.
49. Yang, M.; Lu, S.; Lu, J.; Jiang, S. P.; Xiang, Y., Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells. Chem. Commun. 2010, 46 , 1434-1436.
50. Wang, S.; Yu, D.; Dai, L., Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-free Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc. 2011, 133 , 5182-5185.
51. Wang, S.; Yu, D.; Dai, L.; Chang, D. W.; Baek, J.-B., Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano. 2011, 5 , 6202-6209.
52. Du, L.; Zhang, S.; Chen, G.; Yin, G.; Du, C.; Tan, Q.; Sun, Y.; Qu, Y.; Gao, Y., Polyelectrolyte Assisted Synthesis and Enhanced Oxygen Reduction Activity of Pt Nanocrystals with Controllable Shape and Size. ACS Appl. Mater. Interfaces 2014, 6 , 14043-14049.
53. Hui, L.; Auletta, J. T.; Huang, Z.; Chen, X.; Xia, F.; Yang, S.; Liu, H.; Yang, L., Surface Disinfection Enabled by a Layer-by-Layer Thin Film of Polyelectrolyte-Stabilized Reduced Graphene Oxide upon Solar Near-Infrared Irradiation. ACS Appl. Mater. Interfaces 2015, 7 , 10511-10517.
54. Chen, H.; Wang, Y.; Wang, Y.; Dong, S.; Wang, E., One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 2006, 47 , 763-766.
55. Qiu, L.; Peng, Y.; Liu, B.; Lin, B.; Peng, Y.; Malik, M. J.; Yan, F., Polypyrrole nanotube-supported gold nanoparticles: An efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Appl. Catal. A- Gen. 2012, 413–414 , 230-237.
56. Zinchenko, A.; Miwa, Y.; Lopatina, L. I.; Sergeyev, V. G.; Murata, S., DNA Hydrogel as a Template for Synthesis of Ultrasmall Gold Nanoparticles for Catalytic Applications. ACS Appl. Mater. Interfaces 2014, 6 , 3226-3232.
57. Abdel-Fattah, T. M.; Wixtrom, A., Catalytic Reduction of 4-Nitrophenol Using Gold Nanoparticles Supported on Carbon Nanotubes. ECS J. Solid State Sci. Technol. 2014, 3 , M18-M20.
58. Ma, A.; Xu, J.; Zhang, X.; Zhang, B.; Wang, D.; Xu, H., Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts. Sci. Rep. 2014, 4.
59. Peng, Y.; Wu, X.; Qiu, L.; Liu, C.; Wang, S.; Yan, F., Synthesis of carbon-PtAu nanoparticle hybrids originating from triethoxysilane-derivatized ionic liquids for methanol electrooxidation and the catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1 , 9257-9263.
60. El-Bahy, Z. M., Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction. APPL CATAL A GEN. 2013, 468 , 175-183.
61. Zhang, J.; Chen, G.; Guay, D.; Chaker, M.; Ma, D., Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6 , 2125-2130.
62. Sun, W.; Lu, X.; Tong, Y.; Zhang, Z.; Lei, J.; Nie, G.; Wang, C., Fabrication of highly dispersed palladium/graphene oxide nanocomposites and their catalytic properties for efficient hydrogenation of p-nitrophenol and hydrogen generation. INT J HYD E. 2014, 39 , 9080-9086.
63. Veerakumar, P.; Madhu, R.; Chen, S.-M.; Veeramani, V.; Hung, C.-T.; Tang, P.-H.; Wang, C.-B.; Liu, S.-B., Highly stable and active palladium nanoparticles supported on porous carbon for practical catalytic applications. J. Mater. Chem. A 2014, 2 , 16015-16022.
64. Sun, J.; Fu, Y.; He, G.; Sun, X.; Wang, X., Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite. CATAL. SCI. TECHNOL 2014, 4 , 1742-1748.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code