Responsive image
博碩士論文 etd-0617115-163129 詳細資訊
Title page for etd-0617115-163129
論文名稱
Title
多晶矽結晶法對穿隧式電晶體影響之研究
Study of Tunnel Field-Effect Transistors With Different Poly-Si Crystallization Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-08-11
關鍵字
Keywords
可靠度、金屬誘發橫向結晶、穿隧電晶體、短通道效應、固相結晶法
SCE, Reliability, Tunnel Transistor, MILC, SPC
統計
Statistics
本論文已被瀏覽 5664 次,被下載 28
The thesis/dissertation has been browsed 5664 times, has been downloaded 28 times.
中文摘要
本碩士論文分為三個研究方向,分別探討多晶矽結晶法對元件效能的提升、
尺寸微縮對穿隧電晶體電性表現的影響、元件通道結晶法對可靠度研究。
在結晶法部分,金屬誘發橫向結晶使用金屬鎳為此研究的材料,相較於固相
結晶法有相近的關閉電流,有更高的導通電流及低的次臨界擺幅,此種優秀的電
性表現歸因於金屬誘發橫向結晶使通道有更大的晶粒尺寸,在電子通過通道時會
受到相較於固相結晶法更少的懸浮鍵與應力鍵影響。
穿隧電晶體元件導通原理與傳統電晶體截然不同,傳統電晶體的導通電流會
隨著通道縮減而提高,穿隧電晶體卻不是如此,因為穿隧電晶體的電流主要為能
帶曲折影響導通與否,故穿隧電晶體的短通道效應較不明顯。
可靠度在元件操作上扮演重要的角色,在受到外在環境溫度或施加電壓的影
響下,元件的電性有可能會改變。如果在受到影響後的元件電性有較小的變化,
代表元件的可靠度較高,較適合作長時間使用的元件。
Abstract
There are three research directions in this thesis to discuss, respectively, including the
improvement of poly-silicon crystallization to the device performance, impact of scaling
down for conductivity of tunnel transistor, reliability of different channel
crystallizations of the device.
Using nickel to be a material of Metal Induced Lateral Crystallization (MILC) which
has similar off-state current, higher on-state current and better subthreshold slope (or
subthreshold swing) than Solid Phase Crystallization (SPC). These advantages of
electrical characteristic are attributed to MILC has bigger grain size that leads electrons
through the channel with less influenced by strain bond and dangling bond.
The transmission principle of tunnel transistor is totally different from conventional
transistor. The on-state current of conventional transistor increases with the channel
length decreases. However, the transmission principle of tunnel transistor is dominated
by band bending, so that it has less influenced in Short Channel Effect (SCE).
If the device has smaller changes after influenced by temperature and voltage, which
means it has higher reliability, it will be a suitable device for long-term use.
目次 Table of Contents
論文審定書 ....................................................................................................................... i
論文公開授權書 .............................................................................................................. ii
誌謝 ................................................................................................................................. iii
摘要 ................................................................................................................................. iv
Abstract ............................................................................................................................. v
圖 次 ........................................................................................................................... viii
第一章 緒論 .................................................................................................................. 1
1.1 研究動機 ......................................................................................................... 1
1.2 多晶矽電晶體(Poly Silicon Transistor) .......................................................... 2
1.2.1 傳統多晶矽電晶體 ...................................................................................... 2
1.2.2 穿隧電晶體(Tunnel Transistor) ................................................................... 3
1.3 結晶法(Crystallization)介紹 ........................................................................... 3
1.3.1 固相結晶法 .................................................................................................. 4
1.3.2 金屬誘發結晶法與金屬誘發橫向結晶法 .................................................. 4
1.4 晶粒邊界 ......................................................................................................... 5
1.4.1 晶粒的介紹與影響 ...................................................................................... 6
1.4.2 金屬誘發橫向結晶法之晶粒 ...................................................................... 7
1.5 穿隧原理 ......................................................................................................... 8
1.5.1 單晶矽穿隧電晶體 ...................................................................................... 8
1.5.2 多晶矽穿隧電晶體 ...................................................................................... 9
1.6 短通道效應 ..................................................................................................... 9
第二章 製程介紹 ........................................................................................................ 19
2.1 固相結晶法製程 ........................................................................................... 19
2.2 金屬誘發橫向結晶法 ................................................................................... 20
第三章 結果與討論 .................................................................................................... 26
3.1 電性分析 ....................................................................................................... 26
3.1.1 常態條件 .................................................................................................... 26
3.1.2 溫度效應 .................................................................................................... 27
3.2 可靠度分析 ................................................................................................... 28
3.2.1 75℃電壓效應 ............................................................................................ 28
3.2.2 125℃電壓效應 .......................................................................................... 28
3.3 結論 ............................................................................................................... 29
參考文獻 ........................................................................................................................ 40
參考文獻 References
[1] D. A. Neamen, Semiconductor Physics and Devices: Basic
Principles: McGraw-Hill, 2011.
[2] A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as
energy-efficient electronic switches," Nature, vol. 479, pp. 329-337,
11/17/print 2011.
[3] M. S. Haque, H. A. Naseem, and W. D. Brown, "Aluminum‐induced
crystallization and counter‐doping of phosphorous‐doped
hydrogenated amorphous silicon at low temperatures," Journal of
Applied Physics, vol. 79, pp. 7529-7536, 1996.
[4] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström, and P. A.
Psaras, "Crystallization of amorphous silicon during thin‐film gold
reaction," Journal of Applied Physics, vol. 62, pp. 3647-3655, 1987.
[5] S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, "Low
temperature metal induced crystallization of amorphous silicon using
a Ni solution," Journal of Applied Physics, vol. 82, pp. 5865-5867,
1997.
[6] E. Guliants, W. Anderson, L. Guo, and V. Guliants, "Transmission
electron microscopy study of Ni silicides formed during
metal-induced silicon growth," Thin Solid Films, vol. 385, pp. 74-80,
2001.
[7] Y. Kawazu, H. Kudo, S. Onari, and T. Arai, "Low-temperature
crystallization of hydrogenated amorphous silicon induced by nickel
silicide formation," Japanese journal of applied physics, vol. 29, p.
2698, 1990.
[8] T. J. Konno and R. Sinclair, "Metal-contact-induced crystallization
of semiconductors," Materials Science and Engineering: A, vol. 179,
pp. 426-432, 1994.
[9] G. Radnoczi, A. Robertsson, H. Hentzell, S. Gong, and M. A. Hasan,
"Al induced crystallization of a‐Si," Journal of Applied physics, vol.
69, pp. 6394-6399, 1991.
[10] Z. H. J. e. al., "Ni induced crystallization of amorphous Si thin films
on SiO2," J. Appl. Phys., vol. 84, pp. 194-200, July 1998.
[11] S. W. Lee, Y. C. Jeon, and S. K. Joo, "Pd induced lateral
crystallization of amorphous Si thin films," Applied physics letters,
vol. 66, pp. 1671-1673, 1995.
[12] I.-W. Wu, T.-Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang,
"Passivation kinetics of two types of defects in polysilicon TFT by
plasma hydrogenation," Electron Device Letters, IEEE, vol. 12, pp.
181-183, 1991.
[13] W. Man, Z. Jin, G. A. Bhat, P. C. Wong, and K. Hoi Sing,
"Characterization of the MIC/MILC interface and its effects on the
performance of MILC thin-film transistors," Electron Devices, IEEE
Transactions on, vol. 47, pp. 1061-1067, 2000.
[14] K. R. Olasupo and M. K. Hatalis, "Leakage current mechanism in
sub-micron polysilicon thin-film transistors," Electron Devices,
IEEE Transactions on, vol. 43, pp. 1218-1223, 1996.
[15] The Nobel Prize in Physics 1973. Available:
http://www.nobelprize.org/nobel_prizes/physics/laureates/1973/
[16] M. Razavy, Quantum theory of tunneling: World Scientific, 2003.
[17] J. T. Lai, "Novel processes and structures for low temperature
fabrication of integrated circuit devices," Ann Arbor, MI, USA:
ProQuest, 2008.
[18] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices:
Cambridge University Press, 2009.
[19] C.-M. Hu, "Ni-metal induced lateral crystallization of amorphous
silicon-growth mechanism, metal gettering and LTPS TFTs device
performance," PH.D Doctorate Dissertation, Department of
Materials Science & Engineering, National Chiao Tung University,
2008.
[20] Y.-R. Jhan, Y.-C. Wu, Y.-L. Wang, Y.-J. Lee, M.-F. Hung, H.-Y.
Lin, et al., "Low-temperature microwave annealing for tunnel
field-effect transistor," Electron Device Letters, IEEE, vol. 36, pp.
105-107, 2015.
[21] M. Ming-Wen, C. Chih-Yang, S. Chun-Jung, W. Woei-Cherng, Y.
Wu, x, et al., "Characteristics of PBTI and Hot Carrier Stress for
LTPS-TFT With High-K Gate Dielectric," Electron Device Letters,
IEEE, vol. 29, pp. 171-173, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code