Responsive image
博碩士論文 etd-0617118-140108 詳細資訊
Title page for etd-0617118-140108
論文名稱
Title
平板銲道上SH導波之特性與應用
The Characteristic and Application of SH Guided Wave on Plate Weld
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-25
繳交日期
Date of Submission
2018-07-17
關鍵字
Keywords
磁致伸縮效應、平板檢測、有限元素法、銲道、導波法、SH0模態
Magnetostrictive EMAT, Guided wave method, Finite element method, Weld, Plate inspection, SH0 mode
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
近年來導波法在工業上的運用越趨重要,其優點在於能快速的針對設備進行整體性的檢查,且能在一定距離外將波傳導入而排除現場的量測限制。而平板上傳遞的SH波傳其波型結構簡單,波傳特性適用於平板之缺陷檢測。然而使用SH導波進行平板檢測時若遭遇銲道特徵,可能發生的問題為:明顯的銲道特徵訊號掩蓋了銲道周圍的缺陷訊號,產生檢測上的盲區;銲道特徵導致導波能量降低,可能使銲道後方的缺陷訊號不易顯現。
本研究係以對接銲道、T接銲道及搭接銲道等平板中常見的銲接型式為探討對象,以SH導波探討平板上各銲道回波的特性,並針對銲道後方的缺陷進行檢測應用的評估。首先以有限元素法軟體建立銲道模型進行數值模擬,接著利用一客制化的高頻電磁超音波換能器,以磁致伸縮效應產生SH0波傳模態的導波進行實驗驗證,以評估其實用性。由銲道量測結果可知不同類型銲道產生回波的機制及回波訊號強度,而由於實驗測得的銲道回波周期數與激振設定不同,改以實驗回波之周期數做模擬設定,可得到與實驗值誤差量低於3.5 %的模擬銲道訊號寬度,界定出各銲道因缺陷訊號與其重疊而對缺陷檢測造成影響的範圍。本論文使用之SH導波檢測系統之檢測精度能檢出截面積損失18 mm2的缺陷,若缺陷位於銲道後方,本文考量波傳能量降低及檢測精度後,利用截面積為30~120 mm2的孔洞做為人工缺陷探討其檢出能力。以銲道後缺陷與銲道訊號的比對探討其檢出能力,結果顯示大部份的銲道後缺陷皆可被檢出,無法檢出的缺陷為搭接銲道之後,截面積60 mm2以下的缺陷。以上研究結果將使以磁致伸縮換能器為探頭之高頻SH導波檢測系統更多元地應用在缺陷檢測實務上,提升其檢測能力與精度,降低公/工安危險。
Abstract
The applications of guided wave are important in industry. The advantage of this method is that it can quickly inspect the whole pipeline system and can excite waves from a certain distance to exclude surroundings restrictions. The SH wave propagating with simple wave structure is suitable for plate inspection. However, when using the SH guided wave for plate inspection with weld: since the obvious weld signal covers the defect signal around the weld, it generates inspection blind zone; the energy of transmission wave through weld would reduce, so it is difficult to find the defect signal behind the weld.
In this study, the common plate welds types like butt, T-type and lap weld would be investigated. The purpose of this study is to investigate the interaction properties of incident SH0 waves on each weld joint. The SH0 waves inspection application for the defect behind the weld is also assessed. The weld structures have been modeled using numerical simulation by finite element method, and guided waves of SH0 mode can be generated by using a customized magnetostrictive EMAT (Electromagnetic Acoustic Transducer) for experimental verification. By the comparison result, the generating mechanism and the amplitude of each weld signal are found. With reference to the number of cycles from the measured signal, the simulation signal range can be obtained within 3.5 % error. The blind zone range produced by obvious weld signal is defined by the signal range and width of each weld.
Defect with at least 18 mm2 cross-section area can be detected by experiment equipment. In terms of energy reduction and inspection ability, artificial holes with 30~120 mm2 cross-section area losses as defect is used. Defect detection capability is estimated by ratio of defect to weld signal amplitude. The measurement results show that most of the defects behind weld can be detected. Defect under 60 mm2 cross-section area and behind lap weld cannot be detected. The above research results will make the SH guided wave detection system using magnetostrictive EMAT more applicable for defect detection practices, improve its detection capability and accuracy, and reduce the risk of public/labor safety.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
英文摘要 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3文獻回顧 4
1.4研究方法 7
1.5論文結構 8
第二章 基本理論 11
2.1 SH導波基本理論 11
2.1.1頻散曲線 11
2.1.2相位速度與群波速度 14
2.2勞侖茲力與磁致伸縮效應 16
2.2.1勞侖茲力 16
2.2.2磁致伸縮效應 17
第三章 模擬設定與實驗架構 22
3.1有限元素法的波傳模擬 22
3.1.1模型設定與網格劃分 22
3.1.2 SH導波激發與負載施加 24
3.1.3訊號擷取 26
3.2 SH導波之模擬設定 26
3.2.1檢測銲道之模擬設定 26
3.2.2檢測銲道後缺陷之模擬設定 27
3.3 SH導波檢測設備及流程 27
3.3.1檢測設備 27
3.3.2檢測流程 28
3.3.3波束擴散及缺陷深度定量 31
3.4實驗架設 33
3.4.1對接銲道 33
3.4.2 T接銲道 34
3.4.3搭接銲道 35
第四章 結果與討論 57
4.1銲道波傳特性模擬結果 57
4.1.1對接銲道 57
4.1.2 T接銲道 60
4.1.3搭接銲道 62
4.2檢測銲道後缺陷模擬結果 64
4.2.1對接銲道後缺陷 64
4.2.2 T接銲道後缺陷 64
4.2.3搭接銲道後缺陷 65
4.3實驗結果及與模擬之比較 66
4.3.1銲道訊號特性 66
4.3.2銲道後缺陷檢測能力 71
第五章 結論與未來展望 107
5.1結論 107
5.2未來展望 109
參考文獻 110
參考文獻 References
1. J. Hicks, Welded Joint Design, New York: Industrial Press, 1999.
2. 沈育霖、張銘坤,電磁超音波安全檢測應用技術-管線腐蝕檢測評估,勞動部勞動及職業安全衛生研究所,中華民國104年4月。
3. M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D. Thesis, the Pennsylvania State
University, May 2000.
4. Wavemaker G3 Procedure Based Inspector Training Manual, Guided Ultrasonics Ltd., Nottingham, UK, 2007.
5. Weld Inspection with EMAT Using Guided Waves, Innerspec Technologies Inc., Lynchburg VA, USA, 2008.
6. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Trans Ultrasonics, Ferroelectric, Freq. Control,
Vol. 39, pp. 381-397, 1992.
7. M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
8. P. Cawley and D. N. Alleyne, “The Use of Lamb Waves for the Long-Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1998.
9. J. A. Mcfadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
10. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
11. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
12. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders.Ⅱ. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
13. M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
14. D. N. Alleyne, P. Cawley and M. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe,” Journal of Applied Mechanics, Vol. 65, pp. 649-656, 1998.
15. P. Cawley, M. J. S. Lowe, F. Simonetti, C. Chevalier and A. G. Roosenbrand, “The Variation of the Reflection Coefficient of Extensional Guided Waves in Pipes from Defects as a Function of Defect Depth, Axial Extent, Circumferential Extent and Frequency,” Journal of Mechanical Engineering Science, Vol. 216, pp. 1131-1143, 1998.
16. P. Wilcox, M. J. S. Lowe and P. Cawley, “The Effect of the Dispersion on Long-Range Inspection using Ultrasonic Guided Waves,” NDT&E International, Vol. 34, pp. 1-9, 2001.
17. M. Hirao and H. Ogi, EMATS for Science and Industry: Noncontacting Ultrasonic Measurements, London: Kluwer Academic Publishers, 2003.
18. R. D. James and M. Wutting, “Magnetostriction of Martensite,” Philosophical Magazine A, Vol. 77, pp. 1273-1299, 1998.
19. R. B. Thompson, “New Configurations for the Electromagnetic Generation of SH Waves in Ferromagnetic Materials,” IEEE Ultrasonics Symposium, Vol. 1, pp. 374-378, 1978.
20. R. B. Thompson, “Generation of Horizontally Polarized Shear Waves in Ferromagnetic Materials Using Magnetostrictively Coupled Meander-coil Electromagnetic Transducers,” Appl. Phys., Vol. 34, pp. 175-177, 1979.
21. B. Igarashi and G. A. Alers, “Excitation of Bulk Shear Waves in Steel by Magnetostrictive Coupling,” IEEE Ultrasonics Symposium, Vol. 1, pp. 896-902 1998.
22. J. Gauthier, V. Mustafa and A. Chahbaz, “EMAT Generation of Horizontally Polarized Guided Shear Waves for Ultrasonic Pipe Inspection,” International Pipeline Conference, Vol. 1, pp. 327-334, 1998.
23. M. Hirao and H. Ogi, “An SH-wave EMAT Technique for Gas Pipeline Inspection,” NDT&E International, Vol. 32, pp 127-132, 1999.
24. X. Zhao and J. L. Rose, “Guided circumferential shear horizontal waves in an isotropic hollow cylinder,” Journal of the Acoustical Society of America, Vol. 115(5), pp. 1912-1916, 2004.
25. W. Luo, X. Zhao and J. L. Rose, “A Guided Wave Plate Experiment for a Pipe,” Journal of Pressure Vessel Technology, Vol. 127, pp. 345-350, 2005.
26. R. Ribichini, F. Cegla, P. B. Nagy and P. Cawley, “Study and Comparison of Different EMAT Configurations for SH Wave Inspection,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 58, No. 12, pp. 2571-2581, 2011.
27. W. Li and Y. Cho, “Quantification and Imaging of Corrosion Wall Thinning Using Shear Horizontal Guided Waves Generated by Magnetostrictive Sensors,” Sensors and Actuators A: Physical, Vol. 232, pp. 251-258, 2015.
28. H. Kwun and S. Y. Kim, “Experimental Study of Shear Horizontal Wave Transmission and Reflection at a Tee Joint,” Journal of the Korean Physical Society, Vol. 44, No. 2, pp. 461-463, 2004.
29. M. S. Choi and S. J. Kim, “Reflection and Transmission of Normal Incidence SH0 Waves at a Lap Joint Consisting of Two Plates of the Same Material and Thickness,” Journal of the Korean Physical Society, Vol. 49, No. 5, pp1955-1960, 2006.
30. A. Jankauskas and L. Mazeika, “Ultrasonic Guided Wave Propagation through Welded Lap Joints,” Metals, Vol. 6(12): 315, 2016.
31. D. N. Alleyne, M. J. S. Lowe and P. Cawley, “Detection of Corrosion in Pipe using Lamb Waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995.
32. C. H. Yew, “Using Ultrasonic SH Waves to Estimate the Quality of Adhesive Bonds: A Preliminary Study,” Journal of the Acoustical Society of America, Vol. 76(2), pp. 525-531, 1984.
33. H. J. Salzburger and W. Repplinger, “Thickness Measurements of Sheets and Plates with Horizontally Polarized Guided Plate Waves (SH-Modes) and Electromagnetic Ultrasonic (EMUS) Transducers,” Nondestructive Testing, Vol. 4, pp. 2314-2321, 2002.
34. J. L. Rose, Ultrasonic Waves in Solid Media, New York: Cambridge University Press, 1999.
35. J. D. Achenbach, Wave Propagation in Elastic Solid, New York: North-Holland, 1984.
36. B. Pavlakovic, M. J. S. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16, pp. 185-192, 1997.
37. 林書玉,超聲換能器的原理及設計,科學出版社,中華民國93年6月。
38. X. Zhao and D. G. Lord, “Application of the Villari Effect to Electric Power Harvesting,” Appl. Phys., Vol. 99, pp. 08M703, 2006.
39. R. Murayama, “Study of Driving Mechanism on Electromagnetic Acoustic Transducer for Lamb Wave Using Magnetostrictive Effect and Application in Drawability Evaluation of Thin Steel Sheets,” Ultrasonics, Vol. 37, pp. 31-38, 1999.
40. R. Murayama and K. Mizutani, “Conventional Electromagnetic Acoustic Transducer Development for Optimum Lamb Wave Modes,” Ultrasonics, Vol.40 pp.491-495, 2002.
41. R. Murayama, S. Makiyama, M. Kodama, Yasutoshi Taniguchi, “Development of an Ultrasonic Inspection Robot Using an Electromagnetic Acoustic Transducer for a Lamb Wave and an SH-plate Wave,” Ultrasonics, Vol. 42, pp. 825-859, 2004.
42. 中國冶金百科全書總編輯委員會,中國冶金百科全書 金屬材料。北京:冶金工業出版社,2001年。
43. 電磁超聲波設備量測應用之參考塊。高雄市:台灣金屬材料品管股份有限公司。
44 L. Zhang, W. Luo and J. L. Rose, “Ultrasonic Guided Wave Focusing Beyond Welds in a Pipeline,” Review of Progress in Quantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti, Vol. 25, pp.877-884, 2006.
45. Q. Liu and H. Wirdelius, “A 2D Model of Ultrasonic Wave Propagation in an Anisotropic weld,” NDT & E International, Vol. 40, pp.229-238, 2007.
46. Release 7.0 Documentation for ANSYS, ‘‘Element Libray-solid45 & solid185,” Ansys Element Reference, 2003.
47. P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” Review of Progress in Quatitative NDE, Vol. 11, pp. 203-210, 2002.
48. 陳又任,應用磁致伸縮換能器於石化管線支撐處之缺陷定量檢測研究,國立中山大學機械與機電工程研究所碩士論文,中華民國105年4月。
49. 彭錦銅,旋轉編碼器的認識,中華民國行政院勞工委員會職業訓練局,中華民國90年12月。
50. G. Zhai, T. Jiang and L. Kang, “Analysis of Multiple Wavelengths of Lamb Waves Generated by Meander-line Coil EMATs,” Ultrasonics, Vol. 54, pp. 632-636, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code