Responsive image
博碩士論文 etd-0617118-151756 詳細資訊
Title page for etd-0617118-151756
論文名稱
Title
導波檢測彎管上缺陷之回波補償技術
The Compensation of Guided Wave when Examining Defect at Elbow Pipe
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-25
繳交日期
Date of Submission
2018-07-17
關鍵字
Keywords
補償係數、導波法、彎管、波式轉換、T(0,1)扭矩模態
Guided wave method, Elbow, Mode conversion, T(0,1) torsional guided wave, Compensation coefficient
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
針對管線狀況的檢測,導波法為受到工業上推薦的非破壞檢測技術,其特點為能夠快速並大範圍地進行管線整體性檢測,評估管線使用狀況及壽命。雖然,在煉油、石化工廠、發電廠及燃氣等工業中,使用彎管以提升管線網路的使用效益為非常普遍的現象。然而,由於其特殊的幾何造形,使得導波傳遞路徑由對稱改變為非對稱的形態,產生波式轉換後衍生的各種高階非對稱型模態將互相影響,使得檢測訊號複雜而難以預料,嚴重影響導波檢測的成效。先前的研究發現導波傳經彎管時,因傳遞路徑的改變,波傳能量往彎管外側聚集而造成缺陷回波訊號放大,容易誤判其嚴重性;彎管其他部位因波傳能量太小而成為檢測盲區,會造成更危險的缺陷漏檢情形發生。故本研究將先利用有限元素法模擬T(0,1)扭矩模態導波行經位於彎管與直管上不同位置但幾何形狀相同的缺陷後,記錄其反射訊號,再以彎管與直管上缺陷的反射訊號計算彎管全域的補償係數地圖,希望藉此補償修正彎管上缺陷的回波,使其回到真實的面貌。結果顯示,彎管內側、上側與下側的補償係數皆大於1,而且呈現缺陷越接近彎管末端,補償係數數值越大的結果,而彎管外側的補償係數則皆小於1,而且補償係數呈現上下對稱的情形。研究結果也知不同激振頻率導波的彎管補償係數變化趨勢並不相同,當激振頻率為30 kHz時,內側的補償係數呈現先增後減的情形,而激振頻率為45 kHz時,內側補償係數則呈現單調遞增的結果。上述現象嚴重增加了繪製補償地圖的困難度,因此本研究利用管線的不同幾何參數(管壁厚度與管外半徑)與導波波長的相關性進行研究,結果顯示若激振的導波訊號波長比與管外半徑成等比例時,4英吋與6英吋彎管上的補償係數非常相似,此結果對於在建立通用於不同管徑彎管的補償係數地圖時能節省非常大的困難。
本研究中實驗的管線設置與數值模擬中的設定相同,並且以工業界中使用的導波檢測系統進行量測。結果顯示,彎管內側與上側的補償係數呈現數值模擬大於實驗的結果,造成此一現象的原因是實驗中彎管上的缺陷非常靠近彎管前後的銲道,因此缺陷的反射訊號受到部分銲道反射訊號影響;然而對於可能發生漏檢的彎管內側與上側區域,若使用較大的補償係數修正訊號時,仍然可以達到防止漏檢之效益,因此依舊能運用數值模擬補償係數在實際導波的彎管檢測上,使導波檢測彎管上缺陷的反射訊號獲得適當的還原,以提升導波檢測彎管的準確性與可靠度。
Abstract
Guided wave method is the most recommended non-destructive technique in the industry for pipelines condition inspection. Its characteristics are that it can speedy and widely examine the overall pipelines, and it can estimate the pipelines’ condition and lifespan. However, it is very common using elbow to promote the pipeline system’s application efficiency in refining, petrochemical, power plant and gas industries, but the geometry of the elbow changes the guided wave transporting path from symmetric to asymmetric, it could lead to mode conversion. The higher order asymmetric guided waves because of mode conversion influence each other, and the detection signal becomes complex and hard to predict. It would seriously influence the result of guided wave detection. In the previous studies, when the guided wave passes through the elbow, the energy focus on the outer side of the elbow leads to misjudging the seriousness of the defect. The energy of the other elbow areas is too small to detect the defect, and these areas become the more dangerous blind-area. This research firstly uses finite element method to simulate T(0,1) torsional guided wave pass through the defects which in the same geometry shape but at different elbow and straight pipes’ positions, and using the reflected signals to calculate the entire elbow area’s compensation coefficient map. Let the reflected signals of defect at the elbow return to the original condition. The results are that the compensation coefficients are larger than 1 at inner, top and bottom side of the elbow, and these compensation coefficients become larger as the defects’ positions approach the end of the elbow. The outer side compensation coefficients are smaller than 1. Besides, the top and bottom side compensation coefficients are symmetric. The compensation coefficient trends are different when the guided wave frequency is different. For example, the inner side compensation coefficients increase first and then decrease with the 30 kHz guided wave, but they simply increase with the 45 kHz guided wave. These results seriously increase the difficulties of making compensation coefficient map. This research also discusses the relationship between different geometry parameters (wall thickness and pipe outer side radius) and guided wavelength. The result shows that the compensation coefficients are very similar at 4 in. and 6 in. pipes when the guided wave’s wavelength ratio is identical to the outer side radius ratio, and this result can solve many difficulties when establishing common compensation coefficient map.
The experiment pipeline setup of this research is identical to the numerical setup, and we use guided wave measurement system to detect the reflected signals. We find that the numerical results are larger than experiment results of the inner and top side area. The reason of this results is that the defects are too close to welds, so the defects’ reflected signals are affected by the welds’ reflected signals. However, it can also reach the benefit of preventing miss detection by using more large-numbered compensation coefficient to correct the reflected signals of the inner and top side defects. Consequently, we can apply the numerical compensation coefficient on the practice guided wave detection, and we can correct the reflected signals of defects at the elbow to promote the accurate and reliability of using guided wave to examine the elbow.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
英文摘要 v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3文獻回顧 4
1.4研究方法 9
1.5論文結構 10
第二章 基本理論 14
2.1導波於圓管傳遞之波動方程式 14
2.1.1縱向模態 16
2.1.2扭矩模態 16
2.1.3撓曲模態 17
2.2導波頻散行為 17
2.3波形結構 19
2.4有限元素法 20
第三章 模擬設定與實驗架構 30
3.1有限元素法導波波傳模擬 30
3.1.1模型設定與網格劃分 31
3.1.2圓管導波激發與施加負載方式 32
3.1.3訊號擷取 33
3.1.4模型建立與缺陷設置 34
3.2實驗儀器系統 35
3.3實驗架設 38
第四章 結果與討論 57
4.1四英吋彎管缺陷模擬結果 57
4.1.1激振頻率30.00 kHz之模擬結果 57
4.1.2激振頻率45.00 kHz之模擬結果 62
4.2六英吋彎管缺陷模擬結果 64
4.2.1激振頻率25.70 kHz之模擬結果 65
4.2.2激振頻率20.40 kHz之模擬結果 66
4.3實驗結果與模擬結果之比較 68
4.3.1類比直管人工缺陷 68
4.3.2彎管內側人工缺陷 69
4.3.3彎管外側人工缺陷 71
4.3.4彎管上側人工缺陷 72
第五章 結論與未來展望 110
5.1結論 110
5.2未來展望 111
參考文獻 112
附錄A:彎管E2~E6與類比直管上之人工缺陷 119
附錄B:四英吋彎管上激振頻率45.00 kHz之模擬數據 123
附錄C:六英吋彎管上激振頻率25.70 kHz之模擬數據 129
附錄D:六英吋彎管上激振頻率20.40 kHz之模擬數據 135
附錄E:彎管外側人工缺陷之實驗數據 141
附錄F:彎管上側人工缺陷之實驗數據 145
附錄G:補償係數之使用說明 149

圖目錄
圖1.1 石化廠設備劣化造成財產損失之百分比 11
圖1.2 傳統超音波檢測示意圖:(a) 檢測示意圖,(b) 檢測區域的限制 11
圖1.3 傳統超音波之多點檢測:彎管上每一筆數值皆表示於該位置進行一次檢測 12
圖1.4 環狀陣列式探頭 12
圖1.5 導波檢測示意圖:(a) 儀器架設與檢測示意圖,(b) 檢測訊號示意圖 13
圖1.6 導波演進歷史 13
圖2.1 無限長圓管之圓柱座標系示意圖(內徑為a,外徑為b) 22
圖2.2 圓周向階數與模態表示法:(a) 徑向位移,(b) 周向位移 22
圖2.3 圓管上各種導波之模態波傳模式:(a) 縱向模態,(b) 扭矩模態,(c) 撓曲模態 23
圖2.4 以頻率為橫軸表示的頻散曲線圖:(a) 相位速度,(b) 群波速度 24
圖2.5 L(0,2)模態於6吋管中傳遞1.5公尺之波傳訊號:(a) 70 kHz、5 Cycles,(b) 20 kHz、5 Cycles 25
圖2.6 以頻厚積為橫軸表示的頻散曲線圖:(a) 相位速度,(b) 群波速度 26
圖2.7 波形結構圖:(a) L(0,2)縱向模態,(b) T(0,1)扭矩模態,(c) F(1,1)撓曲模態,(d) F(1,2)撓曲模態,(e) F(1,3)撓曲模態 27
圖2.8 有限元素波傳模擬步驟 29
圖3.1 線彈性六面體元素Solid 45 44
圖3.2 尺寸為90°之6英吋彎管之示意圖 44
圖3.3 管線模型網格分割示意圖:(a) 徑向與周向之網格劃分,(b) 軸向之網格劃分及(c) 彎管之網格劃分 45
圖3.4 圓管上激振訊號源施加位移負載示意圖 46
圖3.5 以30.00 kHz作為單頻調制之基底訊號時,在5個週期數下所加權後的訊號及其頻域圖 46
圖3.6 入射波與銲道回波之時域訊號圖 47
圖3.7 圓管周向各方位示意圖 47
圖3.8 彎管軸向分段示意圖 48
圖3.9 模擬之缺陷示意圖:(a) 軸向位置45°內側之缺陷,(b) 軸向位置45°外側之缺陷,(c) 軸向位置45°上側之缺陷,(d) 上側缺陷放大圖 49
圖3.10 於4英吋和6英吋類比直管上軸向劃分方式:(a) 4英吋類比直管之間距為39.7 mm,(b) 6英吋類比直管之間距為60 mm 51
圖3.11 GUL導波檢測設備系統 52
圖3.12 適用於4英吋管線之夾持式環狀陣列探頭 52
圖3.13 應用軟體(Wave Pro G3)之程式介面 53
圖3.14 紅黑訊號比值與對應缺陷型式之示意圖 53
圖3.15 實驗管線配置圖 54
圖3.16 實驗分類圖 54
圖3.17 訊號訊雜比狀態曲線圖 55
圖3.18 人工缺陷建立的範圍 55
圖3.19 彎管E1上之人工缺陷 56
圖4.1 管線尺寸為4英吋管之模擬配置圖 82
圖4.2 激振頻率30.00 kHz之4英吋類比直管時域訊號圖:(a) 距離第一銲道39.7 mm的缺陷之時域訊號圖,(b) 類比直管上無缺陷之時域訊號圖,(c) 時域訊號的差值 83
圖4.3 激振頻率30.00 kHz之4英吋彎管時域訊號圖:(a) 軸向位置15°,周向位置1點鐘方位的缺陷之時域訊號圖,(b) 彎管上無缺陷之時域訊號圖,(c) 時域訊號的差值 84
圖4.4 激振頻率30.00 kHz之4英吋彎管各方位之缺陷於不同軸向位置時之時域訊號圖 85
圖4.5 激振頻率30.00 kHz之4英吋彎管對稱型訊號補償係數地圖 87
圖4.6 激振頻率30.00 kHz之4英吋彎管非對稱型訊號補償係數地圖 87
圖4.7 激振頻率30.00 kHz之4英吋彎管1~6與12點鐘等方位對稱型訊號補償係數變化趨勢 88
圖4.8 激振頻率30.00 kHz之4英吋彎管7~11點鐘等方位對稱型訊號補償係數變化趨勢 88
圖4.9 激振頻率30.00 kHz導波傳經4英吋彎管時的波傳動畫圖,其中左側圖為導波行經某一區段彎管的上視圖,右側圖則為其立體圖 89
圖4.10 激振頻率30.00 kHz之4英吋彎管1與5、2與4、6與12、7與11以及8與10方位非對稱型訊號補償係數與軸向位置關係圖 91
圖4.11 激振頻率45.00 kHz之4英吋彎管對稱型訊號補償係數地圖 93
圖4.12 激振頻率45.00 kHz之4英吋彎管非對稱型訊號補償係數地圖 93
圖4.13 管線尺寸為6英吋管之模擬配置圖 94
圖4.14 激振頻率25.70 kHz之6英吋彎管對稱型訊號補償係數地圖 95
圖4.15 激振頻率25.70 kHz之6英吋彎管非對稱型訊號補償係數地圖 95
圖4.16 激振頻率30.00 kHz之4英吋與25.70 kHz之6英吋各方位的對稱型訊號補償係數與軸向位置關係圖 96
圖4.17 激振頻率30.00 kHz之4英吋與25.70 kHz之6英吋各方位的非對稱型訊號補償係數與軸向位置關係圖 98
圖4.18 激振頻率20.40 kHz之6英吋彎管對稱型訊號補償係數地圖 100
圖4.19 激振頻率20.40 kHz之6英吋彎管非對稱型訊號補償係數地圖 100
圖4.20 激振頻率30.00 kHz之4英吋與20.40 kHz之6英吋各方位的對稱型訊號補償係數與軸向位置關係圖 101
圖4.21 激振頻率30.00 kHz之4英吋與20.40 kHz之6英吋各方位的非對稱型訊號補償係數與軸向位置關係圖 103
圖4.22 類比直管上無缺陷之A與C掃描圖 105
圖4.23 類比直管上有缺陷之A與C掃描圖 105
圖4.24 類比直管上有缺陷訊號與無缺陷之訊號差 105
圖4.25 彎管E2上無缺陷之A與C掃描圖 106
圖4.26 彎管E2內側,軸向位置30°缺陷之A與C掃描圖 106
圖4.27 彎管內側有缺陷訊號與無缺陷之訊號差 107
圖4.28 彎管內側對稱型與非對稱型訊號補償係數之模擬與實驗數據之比較 108
圖4.29 彎管外側對稱型與非對稱型訊號補償係數之模擬與實驗數據之比較 108
圖4.30 彎管上側對稱型與非對稱型訊號補償係數之模擬與實驗數據之比較 109
圖A.1 彎管E2上之人工缺陷 120
圖A.2 彎管E3上之人工缺陷 120
圖A.3 彎管E4上之人工缺陷 121
圖A.4 彎管E5上之人工缺陷 121
圖A.5 彎管E6上之人工缺陷 122
圖A.6 類比直管上之人工缺陷 122
圖B.1 激振頻率45.00 kHz之4英吋類比直管時域訊號圖:(a) 距離第一銲道39.7 mm的缺陷之時域訊號圖,(b) 類比直管上無缺陷之時域訊號圖,(c) 時域訊號的差值 127
圖B.2 激振頻率45.00 kHz之4英吋彎管時域訊號圖:(a) 軸向位置15°,周向位置1點鐘方位的缺陷之時域訊號圖,(b) 彎管上無缺陷之時域訊號圖,(c) 時域訊號的差值 128
圖C.1 激振頻率25.70 kHz之6英吋類比直管時域訊號圖:(a) 距離第一銲道60 mm的缺陷之時域訊號圖,(b) 類比直管上無缺陷之時域訊號圖,(c) 時域訊號的差值 133
圖C.2 激振頻率25.70 kHz之6英吋彎管時域訊號圖:(a) 軸向位置15°,周向位置1點鐘方位的缺陷之時域訊號圖,(b) 彎管上無缺陷之時域訊號圖,(c) 時域訊號的差值 134
圖D.1 激振頻率20.40 kHz之6英吋類比直管時域訊號圖:(a) 距離第一銲道60 mm的缺陷之時域訊號圖,(b) 類比直管上無缺陷之時域訊號圖,(c) 時域訊號的差值 139
圖D.2 激振頻率20.40 kHz之6英吋彎管時域訊號圖:(a) 軸向位置15°,周向位置1點鐘方位的缺陷之時域訊號圖,(b) 彎管上無缺陷之時域訊號圖,(c) 時域訊號的差值 140
圖E.1 彎管E4上無缺陷之A與C掃描圖 143
圖E.2 彎管E4外側,軸向位置30°缺陷之A與C掃描圖 143
圖E.3 彎管外側有缺陷訊號與無缺陷之訊號差 144
圖F.1 彎管E6上無缺陷之A與C掃描圖 147
圖F.2 彎管E6上側,軸向位置30°缺陷之A與C掃描圖 147
圖F.3 彎管上側有缺陷訊號與無缺陷之訊號差 148

表目錄
表3.1 角度90°彎管尺寸規格表:ANSI B16.9 41
表3.2 缺陷於4英吋和6英吋管上之尺寸 42
表3.3 導波於4英吋與6英吋管(Schedule 40)上各頻率區間所對應之頻率表 42
表3.4 人工缺陷之深度 43
表4.1 激振頻率30.00 kHz之4英吋類比直管上不同位置缺陷之模擬結果 74
表4.2 激振頻率30.00 kHz之4英吋彎管上缺陷之對稱型訊號之反射係數 74
表4.3 激振頻率30.00 kHz之4英吋彎管上缺陷之非對稱型訊號反射係數 75
表4.4 激振頻率30.00 kHz之4英吋彎管上缺陷之對稱型訊號補償係數 75
表4.5 激振頻率30.00 kHz之4英吋彎管上缺陷之非對稱型訊號補償係數 76
表4.6 以30.00 kHz於4英吋管與以25.70 kHz於6英吋管上對稱型訊號補償係數之差異百分比 76
表4.7 以30.00 kHz於4英吋管與以25.70 kHz於6英吋管上非對稱型訊號補償係數之差異百分比 77
表4.8 以30.00 kHz於4英吋管與以20.40 kHz於6英吋管上對稱型訊號補償係數之差異百分比 77
表4.9 以30.00 kHz於4英吋管與以20.40 kHz於6英吋管上非對稱型訊號補償係數之差異百分比 78
表4.10 類比直管之實驗訊號差 78
表4.11 激振頻率32.04 kHz之彎管內側缺陷之實驗訊號差 78
表4.12 激振頻率45.32 kHz之彎管內側缺陷之實驗訊號差 79
表4.13 激振頻率32.04 kHz之彎管內側缺陷之實驗補償係數 79
表4.14 激振頻率45.32 kHz之彎管內側缺陷之實驗補償係數 79
表4.15 激振頻率32.04 kHz之彎管外側缺陷之實驗補償係數 80
表4.16 激振頻率45.32 kHz之彎管外側缺陷之實驗補償係數 80
表4.17 激振頻率32.04 kHz之彎管上側缺陷之實驗補償係數 80
表4.18 激振頻率45.32 kHz之彎管上側缺陷之實驗補償係數 81
表B.1 激振頻率45.00 kHz之4英吋類比直管上不同位置缺陷之模擬結果 124
表B.2 激振頻率45.00 kHz之4英吋彎管上缺陷之對稱型訊號反射係數 124
表B.3 激振頻率45.00 kHz之4英吋彎管上缺陷之非對稱型訊號反射係數 125
表B.4 激振頻率45.00 kHz之4英吋彎管上缺陷之對稱型訊號補償係數 125
表B.5 激振頻率45.00 kHz之4英吋彎管上缺陷之非對稱型訊號補償係數 126
表C.1 激振頻率25.70 kHz之6英吋類比直管上不同位置缺陷之模擬結果 130
表C.2 激振頻率25.70 kHz之6英吋彎管上缺陷之對稱型訊號反射係數 130
表C.3 激振頻率25.70 kHz之6英吋彎管上缺陷之非對稱型訊號反射係數 131
表C.4 激振頻率25.70 kHz之6英吋彎管上缺陷之對稱型訊號補償係數 131
表C.5 激振頻率25.70 kHz之6英吋彎管上缺陷之非對稱型訊號補償係數 132
表D.1 激振頻率20.40 kHz之6英吋類比直管上不同位置缺陷之模擬結果 136
表D.2 激振頻率20.40 kHz之6英吋彎管上缺陷之對稱型訊號反射係數 136
表D.3 激振頻率20.40 kHz之6英吋彎管上缺陷之非對稱型訊號反射係數 137
表D.4 激振頻率20.40 kHz之6英吋彎管上缺陷之對稱型訊號補償係數 137
表D.5 激振頻率20.40 kHz之6英吋彎管上缺陷之非對稱型訊號補償係數 138
表E.1 激振頻率32.04 kHz之彎管外側缺陷之實驗訊號差 142
表E.2 激振頻率45.32 kHz之彎管外側缺陷之實驗訊號差 142
表F.1 激振頻率32.04 kHz之彎管上側缺陷之實驗訊號差 146
表F.2 激振頻率45.32 kHz之彎管上側缺陷之實驗訊號差 146
參考文獻 References
參考文獻
1. 中油公司桃園煉油廠第二加氫脫硫工場火警事件說明。2018年1月29日,取自https://new.cpc.com.tw/news/news-more.aspx?id=833&clsid=2。
2. 吳永豪,石化廠管線支撐座腐蝕偵測技術研究,中華民國行政院勞工委員會勞工衛生安全研究所,中華民國88年10月。
3. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 39, pp. 381-396, 1992.
4. M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
5. M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
6. Wavemaker G3 Procedure Based Inspector Training Manual, Guided Ultrasonics Ltd., Nottingham, UK, 2007.
7. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
8. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells, Including the Effect of Transverse Shear and Rotatory Inertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
9. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
10. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
11. J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 32, pp. 612-613, 1960.
12. J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
13. J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
14. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
15. R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acta Acustica united with Acustica, Vol. 17, pp. 218-222, 1966.
16. R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acta Acustica united with Acustica, Vol. 27, pp. 317-329, 1972.
17. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
18. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
19. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
20. G. M. Light, N. R. Joshi and S. N. Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, Vol. 44, pp. 494, 1986.
21. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves,” Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
22. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
23. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, pp. 27-36, 1998.
24. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36, pp. 163-168, 1998.
25. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
26. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, pp. 457-464, 2001.
27. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” IEEE Transactions on Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, 2001.
28. D. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
29. M. Castaings and P. Cawley, “The Generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
30. P. Cawley and D. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
31. M. J. S. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of the S0 Lamb Wave from a Rectangular Notch in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, pp. 64-74, 2002.
32. O. Diligent, T. Grahn, A. Boström, P. Cawley and M. J. S. Lowe, “The Low-frequency Reflection and Scattering of the S0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, pp. 2589-2601, 2002.
33. D. Alleyne and P. Cawley, “The Long Range Detection of Corrosion in Pipes Using Lamb Waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995.
34. D. Alleyne, M. J. S. Lowe and P. Cawley, “The Inspection of Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859-1866, 1996.
35. D. Alleyne, M. J. S. Lowe and P. Cawley, “The Reflection of Guided Waves from Circumferential Notches in Pipes,” Journal of Applied Mechanics, Vol. 65, pp. 635-641, 1998.
36. M. J. S. Lowe, D. Alleyne and P. Cawley, “The Mode Conversion of a Guided Wave by a Part-circumferential Notch in a Pipe,” Journal of Applied Mechanics, Vol. 65, pp. 649-656, 1998.
37. D. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
38. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, No. 2, pp. 611-625, 2003.
39. A. Demma, P. Cawley, M. J. S. Lowe, A. G. Roosenbrand and B. Pavlakovic, “The Reflection of Guided Waves from Notches in Pipes: a Guide for Interpreting Corrosion Measurements,” NDT&E International, Vol. 37, No. 3, pp.167-180, 2004.
40. H. Kwun and K. A. Bartels, “Experimental Observation of Elastic-wave Dispersion in Bounded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
41. J. L. Rose, J. Li, X. L. Zhao and M. J. Quarry, “Ultrasonic Guided Wave Flexural Mode Tuning for Limited Access Pipe Inspection,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 20, pp. 164-171, 2001.
42. T. Hayashi, K. Kawashima, Z. Sun and J. L. Rose, “Guided Wave Focusing Mechanics in Pipe,” Journal of Pressure Vessel Technology, Vol. 127, pp. 317-321, 2005.
43. Z. Sun, L. Zhang and J. L. Rose, “Flexural Torsional Guided Wave Mechanics and Focusing in Pipe,” Journal of Pressure Vessel Technology, Vol. 127, pp. 471-478, 2005.
44. J. L. Rose, L. Zhang, M. J. Avioli and P. J. Mudge, “A Natural Focusing Low Frequency Guided Wave Experiment for the Detection of Defects Beyond Elbows,” Journal of Pressure Vessel Technology, Vol. 127, pp. 310-316, 2005.
45. J. W. Cheng, S. K. Yang and B. H. Li, “Torsional Guided Wave Attenuation in Buried Pipe,” Materials Evaluation, Vol. 64(4), pp.412-416, 2006.
46. J. W. Cheng, S. K. Yang, and B. H. Li, “Guided Wave Attenuation in Clamp Support Mounted Pipelines,” Materials Evaluation, Vol. 65, No.3, pp.317-322, 2007.
47. 劉柏廷,管內非軸對稱層對T(0,1)扭矩模態之影響,國立中山大學機械與機電工程學研究所碩士論文,中華民國97年。
48. S. K. Yang, P. H. Lee and J. W. Cheng, “Effect of Welded Pipe Support Brackets on Torsional Guided Wave Propagation,” Materials Evaluation, Vol. 67, No.8, pp.935-944, 2009.
49. X. J. Wang, P. W. Tse, C. K. Mechefske and M. Hua, “Experimental Investigation of Reflection in Guided Wave-based Inspection for the Characterization of Pipeline Defects,” NDT&E International, Vol. 43, pp.365–374, 2010.
50. S. K. Yang, P. H. Lee, C. J. Huang and J. W. Cheng, “Wavelet Transform Analysis of Guided Wave Testing on Coated Pipes,” Materials Evaluation, Vol. 68, No. 11, pp. 1273-1284, 2010.
51. A. Løvstad and P. Cawley, “The Reflection of the Fundamental Torsional Guided Wave from Multiple Circular Holes in Pipes,” NDT&E International, Vol. 44, pp. 553-562, 2011.
52. A. C. Cobb, H. Kwun, L. Caseres and G. Janega, “Torsional Guided Wave Attenuation in Piping from Coating, Temperature, and Large-area Corrosion,” NDT&E International, Vol. 47, pp.163-170, 2012.
53. E. Leinov, M. J. S. Lowe and P. Cawley, “Investigation of Guided Wave Propagation and Attenuation in Pipe Buried in Sand,” Journal of Sound and Vibration, Vol. 347, pp. 96-114, 2015.
54. S. Ma, Z. Wu, Y. Wang and K. Liu, “The Reflection of Guided Waves from Simple Dents in Pipes,” Ultrasonics, Vol. 57, pp. 190-197, 2015.
55. S. K. Yang, P. H. Lee and J. W. Cheng, “Evaluation of General Corrosion on Pipes Using the Guided Wave Technique,” Journal of the Chinese Institute of Engineers, Vol. 39, pp. 418-428, 2016.
56. C. Aristégui, P. Cawley and M. J. S. Lowe, “Reflection and Mode Conversion of Guided Waves at Bends in Pipes,” Review of Quantitative Nondestructive Evaluation, Vol. 19, pp. 209-216, 2000.
57. A. Demma, P. Cawley and M. J. S. Lowe, “Mode Conversion of Longitudinal and Torsional Guided Modes due to Pipe Bends,” Review of Quantitative Nondestructive Evaluation, Vol. 20, pp. 172-179, 2001.
58. A. Demma, P. Cawley and M. J. S. Lowe, “Guided Waves in Curved Pipes,” Review of Quantitative Nondestructive Evaluation, Vol. 21, pp. 157-164, 2002.
59. T. Hayashi, K. Kawashima, Z. Sun and J. L. Rose, “Guided Wave Propagation Mechanics Across a Pipe Elbow,” Journal of Pressure Vessel Technology, Vol. 127, pp. 322-327, 2005.
60. A. Demma, P. Cawley, M. J. S. Lowe and B. Pavlakovic, “The Effect of Bends on the Propagation of Guided Waves in Pipes,” Journal of Pressure Vessel Technology, Vol. 127, pp. 328-335, 2005.
61. H. Nishino, K. Yoshida, H. Cho and M. Takemoto, “Propagation Phenomena of Wideband Guided Waves in a Bended Pipe,” Ultrasonics, Vol. 44, pp. e1139-e1143, 2006.
62. H. Nishino, S. Masuda, Y. Mizobuchi, T. Asano and K. Yoshida, “Long-range Testing of Welded Elbow Pipe Using the T(0,1) Mode Ultrasonic Guided Wave,” Japanese Journal of Applied Physics, Vol. 49, pp. 116602-1-116602-6, 2010.
63. H. Nishino, T. Tanaka, S. Katashima and K. Yoshida, “Experimental Investigation of Mode Conversions of the T(0,1) Mode Guided Wave Propagating in an Elbow Pipe,” Japanese Journal of Applied Physics, Vol. 50, pp. 046601-1-046601-7, 2011.
64. 楊旭光、鄭錦文、杜冠宏、黃啟貞、李秉鴻,2012,「導波於彎管上缺陷之研究」,第十六屆非破壞技術檢測研討會,臺北市,論文編號:H0007。
65. 陳宏一,彎管所致之導波聚焦現象及其對缺陷檢測之影響,國立中山大學機械與機電工程學研究所碩士論文,中華民國102年。
66. 許聞傑,聚焦於彎管上之扭矩導波缺陷檢測-時間反轉法之應用,國立中山大學機械與機電工程學研究所碩士論文,中華民國104年。
67. J. Ni, S. Zhou, P. Zhang and Y. Li, “Effect of Pipe Bend Configuration on Guided Waves-based Defects Detection: An Experimental Study,” Journal of Pressure Vessel Technology, Vol. 138(2), pp. 021203-1-021203-9, 2016.
68. A. H. Meitzler, “Mode Coupling Occurring in the Propagation of Elastic Pulses in Wires,” Journal of the Acoustical Society of America, Vol. 33, pp. 435-445, 1961.
69. J. Jr. Zemanek, “An Experimental and Theoretical Investigation of Elastic Wave Propagation in Cylinder,” Journal of the Acoustical Society of America, Vol. 51, pp 265-283, 1972.
70. M. G. Silk and K. F. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
71. B. Pavlakovic, M. J. S. Lowe, D. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16, pp.185-192, 1997.
72. H. Nishino, S. Takashina, F. Uchida, M. Takemoto and K. Ono, “Modal Analysis of Hollow Cylindrical Guided Waves and Applications,” Japanese Journal of Applied Physics, Vol. 40, pp. 364-370, 2001.
73. 李秉鴻,以小波轉換分析改善導波於複雜管線特徵之檢測,國立中山大學機械與機電工程學研究所博士論文,中華民國99年。
74. 劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
75. R. Carandente, J. Ma and P. Cawley, “The Scattering of the Fundamental Torsional Mode from Axi-symmetric Defects with Varying Depth Profile in Pipes,” Journal of the Acoustical Society of America, Vol. 127, pp. 3340-3348, 2010.
76. 謝明夏,以導波法檢測管路中缺陷的研究,國立中山大學機械與機電工程學研究所碩士論文,中華民國92年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code