Responsive image
博碩士論文 etd-0617118-162842 詳細資訊
Title page for etd-0617118-162842
論文名稱
Title
表面型聲波隱形斗篷之設計分析
Design and Analysis of the Surface Impedance Type Acoustic Invisible Cloak
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-25
繳交日期
Date of Submission
2018-07-17
關鍵字
Keywords
表面型聲波隱形斗篷、聲學阻抗斗篷、波場隱形、超穎材料
Surface impedance type acoustic invisible cloak, Acoustic impedance cloak, Metamaterials, Wave invisibility
統計
Statistics
本論文已被瀏覽 5638 次,被下載 1
The thesis/dissertation has been browsed 5638 times, has been downloaded 1 times.
中文摘要
波傳控制技術已成為近年來熱門發展的領域,其應用可在於噪音控制、波傳通信或使波場達到隱形之目的者。傳統的噪音控制係以吸隔音材料為主,但是高性能的吸隔音材料有著體積大、成本高等缺點,因此勢必要開發新型的技術取而代之。近來由於聲學斗篷與超穎材料的理論逐一提出,因為他們具有控制波傳路徑的能力,使得散射體在波場隱形中有實現之可行性。然而,具有此特性的聲學材料無法於自然界中直接取得,故本論文旨在設計並製造出適用於空氣中的隱形斗篷,降低目標物被聲波偵測時的回波音量,達到隱形之目的。
本研究乃是以聲學阻抗斗篷理論為基礎,設計出適用於空氣中的表面形聲波隱形斗篷,研究方法係利用聲學原理中的空腔與管件組合而成之超穎材料構造,並以此構造設計出具有複雜材料參數的聲學遮蔽層。研究中設計出圓形遮蔽層,並藉由數值分析去驗證其對散射體之遮蔽效果。於分析中使用ANSYS Workbench有限元素模擬軟體,模擬散射體貼附表面型聲波隱形斗篷後之差異,並討論在不同無因次化頻率下,其對聲波的遮蔽效果與頻率響應範圍。結果顯示,表面型聲波隱形斗篷能夠降低聲場中的散射情形,並且能在寬頻的範圍下發揮其遮蔽效果,其分析結果與設計目的也相互印證。本研究內容提供了適用於空氣中之遮蔽材料的可行性,提出可實現遮蔽效果之超穎材料結構與其設計方法,並已從數值分析去驗證其遮蔽效果,成果可提供適用於空氣中的聲波遮蔽材料之應用與參考。
Abstract
The issue of controlling wave propagation has become a very popular research in recent years. Its application can be noise controlling, wave communication and hiding the object free from detection. Noise controlling was based on sound-absorbing materials in the past. However, high performance sound-absorbing materials come at large volume and high cost. Therefore, it must develop new technologies to solve this problem. The theories of acoustic cloak and metamaterials were gradually published in recent. They can control the path of the wave and make the wave field invisible. However, the acoustic materials with these characteristics do not exist in nature. The purpose of the study was to design and fabricate invisible cloak in air.
In this study, the author design the surface impedance type acoustic invisible cloak in the air. To realize this cloak, the thesis combines cavities and tubes with metamaterials. The acoustic cloak shell with complex parameters can be designed. The cloak shell was designed and verified by numerical analysis. For numerical analysis, the thesis uses ANSYS workbench simulation software to verify the effect of the surface impedance type acoustic invisible cloak. The response range at dimensionless frequencies are studied. The results demonstrated the effectiveness of the surface impedance type acoustic invisible cloak and they could work in broadband. These research findings provide new strategies and surface impedance design for the physical realization of an invisibility cloak in the air.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
英文摘要 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3文獻回顧 2
1.4研究方法 5
1.5論文結構 5
第二章 研究基本理論 10
2.1聲學超穎材料 10
2.2表面型聲波隱形斗篷設計理論 11
2.2.1透過表面阻抗設計達到聲學隱型 11
2.2.2延伸反應塗層 12
2.2.3利用延伸反應塗層遮蔽圓柱體 13
第三章 數值模擬 20
3.1表面型聲波隱形斗篷結構設計 20
3.2模擬設定 23
第四章 結果與討論 33
4.1數值模擬分析結果 33
4.2模擬結果與文獻比對 39
第五章 結論與未來展望 60
5.1結論 60
5.2未來展望 60
參考文獻 62

圖目錄
圖1.1 在電磁領域中的座標轉換斗篷示意圖 9
圖2.1 在聲場中各案例與聲阻抗之間的關係示意圖 17
圖2.2 將原始散射問題分為三個案例其之間的關係圖 18
圖2.3 具有延伸反應之構造層示意圖 19
圖3.1 模擬流程圖 28
圖3.2 方形單元示意圖 29
圖3.3 Fluid 220元素 29
圖3.4 聲場模型 29
圖3.5 表面型聲波隱形斗篷方形單元示意圖 30
圖3.6 表面型聲波隱型斗篷複合結構單元示意圖 30
圖3.7 五十二組表面型聲波隱型斗篷貼覆散射體示意圖 31
圖3.8 實體模型網格切割示意圖 31
圖3.9 Inlet面 31
圖3.10 Outlet面 32
圖3.11 聲壓總場截取剖面圖 32
圖3.12 繪製聚焦雷達圖所需之取樣線 32
圖4.1 在ka=1.46(400 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 42
圖4.2 在ka=1.46(400 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 43
圖4.3 在ka=1.83(500 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 44
圖4.4 在ka=1.83(500 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 45
圖4.5 在ka=2.31(630 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 46
圖4.6 在ka=2.31(630 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 47
圖4.7 在ka=2.93(800 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 48
圖4.8 在ka=2.93(800 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 49
圖4.9 在ka=3.66(1,000 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 50
圖4.10 在ka=3.66(1,000 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 51
圖4.11 在ka=4.58(1,250 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 52
圖4.12 在ka=4.58(1,250 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 53
圖4.13 在ka=5.49(1,500 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 54
圖4.14 在ka=5.49(1,500 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 55
圖4.15 在ka=7.32(2,000 Hz)時的聲壓總場:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 56
圖4.16 在ka=7.32(2,000 Hz)時由散射場所繪製之聚焦雷達圖:(a) 散射體未貼附表面型聲波隱形斗篷,(b) 散射體已貼附表面型聲波隱形斗篷 57
圖4.17 散射能量與無因次化頻率之關係曲線圖 58
圖4.18 本論文各個ka值在參考文獻散射能量曲線圖之位置 59
圖4.19 散射能量與無因次化頻率之關係曲線 59

表目錄
表1.1 聲學斗篷概念與理論發展 7
表1.2 聲學轉換斗篷與相關超穎材料 8
表3.1 表面型聲波隱形斗篷設計參數 26
表3.2 有限元素軟體內所使用之材料參數 27
表4.1 不同頻率相對應到之波長與ka值 41
表4.2 聲強位準計算表 41
參考文獻 References
S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Physical Review Letters. Vol. 58, p. 2486, 1987.
E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters, Vol. 58, p. 2059, 1987.
V. G. Veselago, “The Electorodynamics of Substances with Simultaneously Negative Values of ϵ and μ,” Soviet Physics Uspekhi, Vol. 10, pp. 509-514, 1968.
R. A. Shelby, D. R. Smith, S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, Vol. 292, pp. 77-79, 2001.
J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters, Vol. 85, pp. 3966-3969, 2000.
J. B. Pendry, D. Schurig, D. R. Smith, “Controlling Electromagnetic Fields,” Science, Vol. 312, pp. 1780-1782, 2006.
S. A. Cummer, D. Schurig, “One Path to Acoustic Cloak,” New Journal of Physics, Vol. 9, pp. 45, 2007.
D. Torrent, J. Sánchez-Dehesa, “Acoustic Cloaking in Two Dimensions: A Feasible Approach,” New Journal of Physics, Vol. 10, 063015, 2008.
S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, A. Starr, “Scattering Theory Derivation of a 3D Acoustic Cloaking Shell,” Physical Review Letters, Vol. 100, 024301, 2008.
T. Chen, Y. L. Tsai “A Derivation for the Acoustic Material Parameters in Transformation Domains,” Journal of Sound and Vibration, Vol. 332, pp. 766-779, 2013.
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, “Locally Resonant Sonic Materials,” Science, Vol. 289, pp. 1734-1736, 2000.
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, C. K. Kim, “Acoustic Metamaterial with Negative Density,” Physics Letters A, Vol. 373, pp. 4464-4469, 2009.
A. Sukhovich, L. Jing, J. H. Page, “Negative Refraction and Focusing of Ultrasound in Two-Dimensional Phononic Crystals,” Physical Review B, Vol. 77, 014301, 2008.
Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, P. Sheng, “Acoustic Metamaterial Panels for Sound Attenuation in the 50-1000 Hz,” Applied Physics Letters, Vol. 96, 041906, 2010.
J. Zhu, J. Christensen, J. Jung, L. Martin-Moreno, X. Yin, L. Fok, X. Zhang, F. J. Garcia-Vidal, “A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging,” Nature Physics, Vol. 7, pp. 52-55, 2011.
S. Guenneau, A. Movchan, G. Pétursson, A. Ramakrishna, “Acoustic Metamaterial for Sound Focusing and Confinement,” New Journal of Physics, Vol. 9, 399, 2007.
D. Torrent, J. Sánchez-Dehesa, “Anisotropic Mass Density by Radically Periodic Fluid Structures,” Physical Review Letters, Vol. 105, 174301, 2010.
C. L. Ding, X. P. Zhao, “Multi-band and Broadband Acoustic Metamaterial with Resonant Structure,” Journal of Physics D: Applied Physics, Vol. 44, 215402, 2011.
A. N. Norris, A. J. Nagy, “Acoustic Metafluids,” Journal of the Acoustical Society of America, Vol. 125, pp. 839-849, 2009.
A. N. Norris, A. J. Nagy, “Acoustic Metafluids Made from Three Acoustic Fluids,” Journal of the Acoustical Society of America, Vol. 128, pp. 1606-1616, 2010.
J. B. Pendry, J. Li, “An Acoustic Metafluid: Realizing A Broadband Acoustic Cloak,” New Journal of Physics, Vol. 10, 115032, 2008.
Y. I. Bobrovnitskii, “Impedance Acoustic Cloaking,” New Journal of Physics, Vol. 12, 043049, 2010.
D. Torrent, J. Sánchez-Dehesa, “Broadband Acoustic Cloaks Based on the Homogenization of Layered Materials,” Wave Motion, Vol. 48, pp. 497-504, 2011.
J. Zhu, T. Chen, Q. Liang, X. Wang, J. Xiong, P. Jiang, “A Unidirectional Acoustic Cloak for Multilayered Background Media with Homogeneous Metamaterials,” Journal of Physics D: Applied Physics, Vol. 48, 305502, 2015.
T. Y. Huang, C. Shen, Y. Jing, “Membrane- and Plate- type Acoustic Metamaterials,” Journal of the Acoustical Society of America, Vol. 139, pp. 3240-3250, 2016.
S. Babaee, J. T. B. Overvelde, E. R. Chen, V. Tournat, K. Bertoldi, “Reconfigurable Origami-inspired Acoustic Waveguides,” Science Advances, Vol. 2, No. 11, e1601019, 2016.
J. Li, J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Physical Review Letters, Vol. 101, 203901, 2008.
X. L. Zhang, X. Ni, M. H. Lu, “A Feasible Approach to Achieve Acoustic Carpet Cloak in Air,” Physics Letters A, Vol. 376, pp. 493-496, 2012.
B. I. Popa, S. A. Cummer, “Design and Characterization of Broadband Acoustic Composite Metamaterials,” Physical Review B, Vol. 80, 174303, 2009.
L. Zigoneanu, B. I. Popa, A. F. Starr, S. A. Cummer, “Design and Measurements of Broadband Two-dimensional Acoustic Metamaterial with Anisotropic Effective Mass Density,” Journal of Applied Physics, Vol. 109, 054906, 2011.
G. Dupont, M. Farhat, A. Diatta, S. Guenneau, S. Enoch, “Numerical Analysis of Three-dimensional Acoustic Cloaks and Carpets,” Wave Motion, Vol. 48, pp. 483-496, 2011.
L. Zigoneanu, B. I. Popa, S. A. Cummer, “Three-dimensional Broadband Omni directional Acoustic Ground Cloak,” Nature Materials, Vol. 13, No. 4, pp. 352-355, 2014.
G. Ma, P. Sheng, “Acoustic Metamaterials: from Local Resonances to Broad Horizons,” Science Advances, Vol. 2, No. 2, e1501595, 2016.
R. V. Craster, S. Guenneau, Acoustic Metamaterials, Springer, pp. 141-239, 2013.
Y. I. Bobrovnitskii, “A Nonscattering Coating for a Cylinder,” Acoustical Physics, Vol. 54, pp. 879-889, 2008.
Y. I. Bobrovnitskii, “A New Impedance-based Approach to Analysis and Control of Sound Scattering,” Journal of Sound and Vibration, Vol. 297, pp. 743-760, 2006.
Y. I. Bobrovnitskii, “Theory of the New High-efficiency Absorbing and Non-scattering Coating,” Acoustical Physics, Vol. 53, pp. 535-545, 2007.
S. Zhang, C. Xia, N. Fang, “Broadband Acoustic Cloak for Ultrasound Waves,” Physical Review Letters, Vol. 106, 024301, 2011.
W. Zhu, C. Ding, X. Zhao, “A Numerical Method for Designing Acoustic Cloak with Homogeneous Metamaterials,” Applied Physics Letters, Vol. 97, 131902, 2010.
B. I. Popa, L. Zigoneanu, S. A. Cummer, “Experimental Acoustic Ground Cloak in Air,” Physical Review Letters, Vol. 106, 253901, 2011.
蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華圖書股份有限公司,2004。
D. T. Blackstock, Fundamentals of Physical Acoustics, John Wiley & Sons, Inc., New York, 2000.
R. F. Barron, Industrial Noise Control and Acoustics, Marcel Dekker, Inc., New York, Chap. 8, pp. 330-405, 2003.
L. L. Beranek, Acoustics, Americould Institute of Physics, New York, Chap. 5, pp. 128-143, 1986.
M. L. Munjal, Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons, Inc., New York, Chap. 2, pp. 42-54, 1987.
L. E. Kinsler, A. R. Frey, A. B. Coppens, J. V. Sanders, Fundamentals of Acoustics, John Wiley & Sons, Inc., New York, Chap. 10, pp. 283-287, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code