Responsive image
博碩士論文 etd-0617120-172125 詳細資訊
Title page for etd-0617120-172125
論文名稱
Title
使用V型二進製粒子群優化算法的配電網損耗最小化和電網彈性規劃
Distribution Network Loss Minimization and Grid Resiliency Planning using V-shaped Binary Particle Swarm Optimization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-16
繳交日期
Date of Submission
2020-07-17
關鍵字
Keywords
粒子群優化,二元粒子群優化,離散優化,映射族,最佳重構和電容器放置,網絡拓撲為基礎的電力潮流方法,放射型配電網路,懲罰運算法
Optimal reconfiguration and Capacitor placement, Particle Swarm Optimization, Binary Particle Swarm Optimization, Mapping family
統計
Statistics
本論文已被瀏覽 5681 次,被下載 55
The thesis/dissertation has been browsed 5681 times, has been downloaded 55 times.
中文摘要
最佳重構和電容器放置是兩種最常用來減少放射型配電網路中電力耗損的方法,以及能在各種條件限制之下,例如電壓、電流、電容和放射條件都受限的情況下,改善電壓。為同時解決這類型非線性離散最佳化的問題,本論文將提採用一智慧演算法,以期能將電力耗損降到最低。
本論文運用V型二元粒子群優化演算法(V-Shaped Binary Particle Swarm Optimization, V-Shaped BPSO),藉由考慮兩個不同的速度映射族形獲得放射型配電網中的最佳功率損耗,從而解決了第一階段重構和電容器放置的問題。此一研究方法是利用二元字串來表示聯絡開關的狀態、電容器狀況和電容器尺寸。另外也利用懲罰運算法處理限制條件、極限過程驗算法來處理放射行條件並獲得可行的聯絡開關,亦修改以網絡拓撲為基礎的電力潮流方法以計算電流並確定網絡中的電耗。
本論文所提出的演算法已透過MATLAB©進行模擬,並使用兩種不同的IEEE基準系統中驗證(含IEEE 33和IEEE 69總線系統),透過三個案例研究以分析本算法的有效性。第一個案例是在IEEE 33總線系統,包括五個不同的設計方案,方案一為最佳網路重構、方案五為同時最佳網路重構以及電容器放置,然後與文獻中的其他算法進行比較,所提出的算法顯示有明顯改善。第二個案例研究在IEEE 33總線系統網絡的四個不同位置模擬了四個不同的故障分析,這個想法是確定最佳的配電系統恢復計劃,將電容器安裝在固定節點,聯絡開關則是可調式,藉此提高電網彈性。最後一個案例是研究更大、更複雜的IEEE 69總線系統。
Abstract
Optimal reconfiguration and capacitor placement methods are two of the most convenient alternatives to reduce power losses in a radial distribution network and improved voltage profile under various constraints such as voltage limits, current limits, capacitor limits, and radial conditions. To solve this kind of two nonlinear discrete optimization problems simultaneously, a much more intelligent algorithm needs to be employed to obtain an optimal solution.
Thus, this thesis employed an effective algorithm named V-Shaped Binary Particle Swarm Optimization (V-Shaped BPSO) to solve first stage reconfiguration and capacitor placement problems simultaneously by considering two families of velocity mapping functions. This proposed algorithm uses a binary string to represent the state of tie switches, capacitor conditions, and capacitor sizing. A penalty-based factor method was used to handle the power flow constraints and a limit process checking algorithm was used to handle the radial condition. A Network-Topology-Based Load Flow method (NTBLF) has been adapted and modified to calculate power flow and determine power losses in the network.
The proposed algorithm was simulated in MATLAB© environment and verified by using two different IEEE benchmark systems namely IEEE 33-bus and IEEE 69-bus systems. Three case studies were conducted. The first case study consists of five designed scenarios. The numerical results obtained for both scenarios one and five show enhanced performance when compared to other methods in literature in terms of power loss reduction and improved voltage profile. The second case study is on a distribution system restoration plan to improve grid resiliency. The last case study performed on a much bigger and more complex system. An inclusive discussion provided on the obtained results.
目次 Table of Contents
Table of contents
Thesis Validation Letter in Chinese……………………………………………i
Thesis Validation Letter in English…………………………………………….ii
Abstract (Chinese)………………………………………………………………….…...iii
Abstract (English)……………………………………………………………….……....v
Table of contents…………………………………………………………………........vi
List of figures…………………………………………………………...………...........x
List of Tables………………………………………………………………….…….........xii
List of Symbols…………………………………………………………………...........xiii
Chapter 1
Introduction
1.1 Introduction ……………………………………………………………………........1
1.2 Motivation…………………………………………………...……………….….....…3
1.3 Thesis objectives…………………………………………………………………...3
1.4 Thesis Methodology……………………………………………………...……....4
1.5 Thesis content organization…………………………………………………..5
Chapter 2
Literature Review
2.0 Introduction…………………………………………………………..……........……...........................................................................................................7
2.1 Basic structure of an electrical power system and radial distribution system……........................................................................7
2.2 Electric Power Distribution System………………………………………………....................................................................................................9
2.2.1 Radial Distribution system……………………………………………………......................................................................................................9
2.2.2 Loop Distribution system…………………………………………………….......................................................................................................10
2.2.3 Network Distribution system……………………………………...………......................................................................................................11
2.3 Power Flow Analysis………………………………………………...…………..............................................................................................................12
2.4 Distribution Network Reconfiguration for Power Loss Minimization and Voltage Profile Improvement…………………………………….13
2.5 Distribution Network Reconfiguration and optimal capacitor placement………..............................................................................15
2.6 literature review summary………………………………………………..........................................................................................................……...17
Chapter 3
Formulation of the Network Reconfiguration and capacitor placement problem
3.0 Introduction………………………………………………..………….………................................................................................................................….18
3.1 Problem formulation………………………………………………………............................................................................................................…….18
3.1.1 Line power flow equations……………………………………………....................................................................................................…….19
3.1.2 Simplified Distribution Flow Method…………………................................................................................................……………………20
3.2. Objective function……………………………………………………………............................................................................................................…..21
3.3 Constraint Handling …………………………………………………...........................................................................................................…………...23
3.3.1 Initialization algorithm………………………………………...………......................................................................................................…...23
3.3.2 constraint handling algorithm……………………………………...…….................................................................................................….25
3.3.2.1 limit check processing……………………………………………….....................................................................................................25
3.3.2.2 handling of power flow constraints…………………………………..............................................................................................26
3.4 Network-Topology-based Load Flow method…………………………………….............................................................................................26
3.5 Reconfiguration and Capacitor placement initialization for different scenarios…........................................................................29
Chapter 4
V-Shaped Binary Particle Swarm Optimization Algorithm
4.1 Introduction to Particle Swarm Optimization………………………………..............................................................................................…….31
4.2 Continuous particle swarm optimization………………………………………...............................................................................................….32
4.2.1 The general steps to implement PSO algorithm to solving an optimization problem are as follows……………………………..….35
4.3 Discrete Particle Swarm Optimization……………………………….………...................................................................................................….37
4.3.1 The general steps to implement the BPSO algorithm to solving an optimization problem are as follows…………………….….39
4.4 Mapping Family…………………………………………………...………….….................................................................................................................40
4.5 V-shaped-BPSO Reconfiguration and Capacitor placement swarm module….…...........................................................................42
4.5.1 Representation of Tie switches, Capacitor location, and size as particle…...........................................................................43
4.6 V-Shaped-BPSO- Reconfiguration and capacitor placement optimization module........................................................................45
Chapter 5
Simulation Results
5.1 Introduction…………………………………………………………..……......................................................................................................................…..47
5.2 IEEE 33 bus system test case I …………………………………………….......................................................................................................……...48
5.2.1 System data and one-line diagram………………………………………….....................................................................................................48
5.2.2: Performance comparison for various mapping family shapes……………...................................................................................49
5.2.3 Simulation Results for Case I……………………………………………...........................................................................................................51
5.2.4 Voltage profile improvement results for Scenario 1, 2, 3, 4, and 5………..................................................................................…53
5.2.5 Power Losses in the Branches for Scenario 1 and 5…………………........................................................................................……...58
5.3 Performance comparison with other methods………………………………….................................................................................................62
5.3.1 Comparison with other algorithms for 33 bus system with Scenario 1……..............................................................................62
5.3.2 Comparison with other algorithms for 33 bus system with Scenario 5.……...............................................................................63
5.4 IEEE 33 bus system test case II…………….……………………………………..........................................................................................................64
5.4.1 Optimal capacitor placement in radial distribution network considering reconfiguration………………...……………………………………..64
5.4.2 Simulation results in Case study II………………………………………......................................................................................................….67
5.5 IEEE 69 bus system test case III……………………………………………................................................................................................................71
5.5.1 System Data……………………………………...…………………………....................................................................................................................71
5.5.2V-shaped BPSO results for Scenario 1-Distribution network reconfiguration..............................................................................72
5.5.3 V-shaped BPSO results for Scenario 2-Distribution network reconfiguration and optimal placement of capacitor………………….74
Chapter 6
Conclusion
6.1 Conclusion ……………………………………………...………………………..........................................................................................................................77
6.2 Future works ……………………………………………………...…………….........................................................................................................................78
Reference
Reference…………………………………………………...…..................................................................................................................................................79

Appendix
Radial Distribution system test information………………………………………….........................................................................................................86
Figure A.1: Single line 33 IEEE Distribution test system………………………..................................................................................................…….86
Figure A.2: Single line 69 IEEE Distribution test system……………………………...................................................................................................87
參考文獻 References
References
[1] A. Merlin and H. Back, “Search for a minimal-loss operating spanning-tree configuration in an urban power distribution system,” in Proceedings of the 5th Power System Computation Conference (PSCC), pp. 1–18, Cambridge, UK, September 1975.
[2] W.M. Lin, H.C. ‘Chin, “A new Approach for Distribution Feeder Reconfiguration for Loss Reduction and Service Restoration” accepted for publication in the IEEE PES March 1997
[3] J. Olamaei, T. Niknam, and S. Badali Arefi, “Distribution feeder reconfiguration for loss minimization based on modified honey bee mating optimization algorithm,” Energy Procedia, vol. 14, pp. 304–311, 2012
[4] Y.-J. Jeon and J.-C. Kim, “An efficient algorithm for network reconfiguration in large scale distribution systems,” in Proceedings of the IEEE Power Engineering Society Summer Meeting, vol. 1, pp. 243–247, Edmonton, Canada, July 1999.
[5] Diana P. Montoya, Juan M. Ramirez. (2012). Reconfiguration and optimal capacitor placement for loss reduction. IEEE, 1-5.
[6] B. S. Bhoria and K. M. Loveleen, “Placement of distributed generating units into distribution networks by considering losses at different loading conditions,” International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS), pp. 451–456, 2013
[7] Md. Anisa Shereen, “Optimal allocation of DG units for radial distribution systems using genetic algorithm,” International Journal of Engineering and Advanced Technology (IJEAT), Vol. 1, No. 6, pp.175–179, 2012.
[8] W. H. Kersting, Distribution system modeling and analysis third edition. CRC Press,2012.
[9] B. Stott, “Review of load-flow calculation methods”, Proceedings of the IEEE, vol. 62, no. 7, pp. 916–929, 1974, ISSN: 0018-9219. DOI: 10.1109/PROC.1974.9544.
[10] S. Chatterjee and S. Mandal, “A novel comparison of gauss-seidel and newton- Raphson methods for load flow analysis”, in 2017 International Conference on Power and Embedded Drive Control (ICPEDC), 2017, pp. 1–7. DOI: 10.1109/ICPEDC.2017.8081050.
[11] A. S. Remolino and H. F. R. Paredes, “An efficient method for power flow calculation applied to the reconfiguration of radial distribution systems”, in 2016 IEEE PES Transmission Distribution Conference and Exposition-Latin America (PES T D-LA), 2016, pp. 1–6. DOI: 10.1109/TDC-LA.2016.7805659.
[12] Jen-Hao Teng, “A Network-Topology-based Three-Phase Load Flow for Distribution Systems”, Proc. Natl. Sci. Counc. ROC(A) Vol. 24, No. 4, 2000. pp. 259–264.
[13] J. Glover and M. Sarma, Power system analysis and design, 2nd edn. PWS Publishing Co, Boston, MA, 1994.
[14] Olamaei, J., T. Niknam and G. Gharehpetian. “an approach based on ant colony optimization for distribution feeder reconfiguration considering distributed generators”19th International Conference on Electricity Distribution, 2007, Vienna.
[15] D. P. Montoya, J. M. Ramirez. (2012). Reconfiguration and optimal capacitor placement for loss reduction. IEEE, 1-5.
[16] R. Srinivasa Rao, S. V. L. Narasimham, M. Ramalinga Raju, and A. Srinivasa Rao, “Optimal network reconfiguration of large-scale distribution system using Harmony search algorithm,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1080–1088, 2011.
[17] Jin, X., Zhao, J., Sum, Y., Li K., Zhang, B.: Distribution network reconfiguration for load balancing using binary particle swarm optimization. International Conference on power system technology (POWERCON 2004), Singapore, 2004, pp. 507–510 (2004).
[18] T. T. Nguyen and A. V. Truong, “Distribution network reconfiguration for power loss minimization and voltage profile improvement using cuckoo search algorithm,” Int. J. Electr.Power Energy Syst., vol. 68, pp. 233–242, 2015.
[19] Biswas, Soma, and S. K. Goswami. "Genetic algorithm based optimal placement of distributed generation reducing loss and improving voltage sag performance." Proc. of Int. Conf. on Advances in Electrical & Electronics. 2010
[20] Hsiao YT, Chen CH, Chien CC. Optimal capacitor placement in distribution systems using a combination fuzzy-GA method. International Journal of Electrical Power & Energy Systems, 26(7): 501-508, 2004
[21] Swarup, K. S. "Genetic algorithm for optimal capacitor allocation in radial distribution systems." Proc. sixth WSEAS int. conf. evolutionary computation, Lisbon, Portugal. 2005
[22] E.S. Ali, S.A. Elazim, A.Y. Abdelaziz “Improved Harmony Algorithm for optimal locations and sizing of capacitors in radial distribution systems” Int. J. Electr. Power Energy Syst., 79 pp. 275-284, 2016.
[23] Das D. “Optimum placement of shunt capacitors in a radial distribution system for substation power factor improvement using fuzzy GA method.” International Journal of Electrical Power & Energy Systems, 77: 314-326, 2016.
[24] D.R. Horacio, H.V. Ildefonso, S.H. Ra´ul, and O. R. Romina, “Feeder reconfiguration and capacitor placement in distribution systems: an approach for simultaneous solution using a genetic algorithm,” Ingeniare. Revista Chilena de Ingenier´ıa, vol. 18, no. 1, pp. 144–153, 2010.
[25] M. Sedighizadeh, M. Dakhem, M. Sarvi, and H. H. Kordkheili, “Optimal reconfiguration and capacitor placement for power loss reduction of distribution system using improved binary particle swarm optimization,” International Journal of Energy and Environmental Engineering, vol.5, no. 73, pp.1–11,2014.
[26] A. N. Hussain, W. K. S. Al-Jubori and H. F. Kadom. (2019). Hybrid Design of Optimal Capacitor Placement and Reconfiguration for performance improvement in a radial distribution system. Hindawi, 1-15.
[27] A. A. Firdaus, O. Penangsang, and A. Soeprijanto, “Distribution network reconfiguration using binary particle swarm optimization to minimize losses and decrease voltage stability index,” Bulletin of Electrical Engineering and Informatics, vol. 7, no. 4, pp. 514–521, 2018.
[28] A. Tandon and D. Saxena, “A Comparative Analysis of SPSO and BPSO for Power Loss Minimization in Distribution System Using Network Reconfiguration,” in International Conference on Innovation Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, 2014, pp. 226–232.
[29] N. C. Sahoo and K. Prasad, “A fuzzy genetic approach for network reconfiguration to enhance voltage stability in radial distribution systems,” Energy Conversion and Management, vol. 47, no. 18-19, pp. 3288–3306, 2006.
[30] J. Olamaei, T. Niknam, and G. Gharehpetian, “Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 575–586, 2008.
[31] Chang, C.F.: Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm. IEEE Trans. Power Syst. 23(4), 1747–1755 (2008).
[32] Kasaei, M.J., Gandomkar, M.: Loss reduction in distribution system with Simultaneous use of capacitor placement and reconfiguration by Ant colony algorithm. In: 24th International Power System Conference (2009).
[33] A. Wazir and N. Arbab, “Analysis and Optimization of IEEE 33 Bus Radial Distributed System Using Optimization Algorithm,” JETAE) J. Emerg. Trends Appl. Eng., vol. 1, no. 2, pp. 2518–4059, 2016.
[34] A. A. Z. Diab and H. Rezk, “Optimal sizing and placement of capacitors in radial distribution systems based on grey wolf, dragonfly and moth-flame optimization algorithms,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, no. 1, pp. 77–96, 2019.
[35] Gomes Jr, F.V., Carneiro, S., Pereira, J.L.R., Vinagre, M.P., Garcia, P.A.N., Araujo, L.R.: A new distribution system reconfiguration approach using optimal power flow and sensitivity analysis for loss reduction. IEEE Trans. Power Syst. 21(4), 1616–1623 (2006).
[36] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing”, IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–1407, 1989, ISSN: 0885-8977. DOI:10.1109/61.25627.
[37] H. D. Chiang and R. Jean-Jumeau, “Optimal network reconfigurations in distribution systems. ii. solution algorithms and numerical results”, IEEE Transactions on Power Delivery, vol. 5, no. 3, pp. 1568–1574, 1990, ISSN: 0885-8977. DOI: 10.1109/61.58002.
[38] S. Das and T. Malakar, “An emission constraint capacitor placement and sizing problem in radial distribution systems using modified competitive swarm optimizer approach,” International Journal of Ambient Energy, vol.40, pp.1 –24,2019.
[39] M. A. N. Guimarães and C. A. Castro, “An efficient method for distribution systems reconfiguration and capacitor placement using a chu-Beasley based genetic algorithm,” in Proceedings of the 2011 IEEE Trondheim Power Tech, pp.1–7, Trondheim, Norway, June 2011
[40] J. Kennedy, R.C. Eberhart, et al., “Particle swarm optimization”, In Proceedings of IEEE international conference on neural networks, volume 4, pages 1942–1948. Perth, Australia, 1995.
[41] Kennedy J. and Eberhart R.C, “A Discrete Binary version of the particle swarm algorithm.” 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, pp. 4104-4108 vol 5, 1997.
[42] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in IEEE Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43, 1995.
[43] M. N. Alam, B. Das, V. Pant, A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination, Electric Power Systems Research 128 (2015) 39–52. DOI:DOI:10.1016/j.epsr.2015.06.018.
[44] Utkarsh Sharma Particle Swarm Optimization, Retrieved from https://www.openprocessing.org/sketch/131608 on May 20, 2020.
[45] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary particle swarm
optimization. Swarm and Evolutionary Computation. 2013, 9: 1–14. Available from: http://dx.doi.org/10.1016/j. swevo.2012.09.002
[46] Wang, D., Tan, D. & Liu, L. Particle swarm optimization algorithm: an overview. Soft Comput 22, 387–408 (2018). https://doi.org/10.1007/s00500-016-2474-6
[47] Y. Shi and R. C Eberhart, “Empirical study of particle swarm optimization,” Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, pp.1950 Vol. 3, 1999
[48] S. Vakili, M.S. Gadala, “Effectiveness of Particle Swarm Optimization Technique in Dealing with Noisy Data in Inverse Heat Conduction Analysis,” Numerical Heat Transfer, Part B: Fundamentals, pp.119-141, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code