Responsive image
博碩士論文 etd-0618101-142808 詳細資訊
Title page for etd-0618101-142808
論文名稱
Title
利用立方樣條插補法作極低位元率及可擴充視訊壓縮之研究
The Research of Very Low Bit-Rate and Scalable Video Compression Using Cubic-Spline Interpolation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-08
繳交日期
Date of Submission
2001-06-18
關鍵字
Keywords
立方樣條插補法、極低位元率視訊編碼、可擴充視訊壓縮
cubic-spline interpolation, very low bit-rate video coding, scalable video compression
統計
Statistics
本論文已被瀏覽 5713 次,被下載 20
The thesis/dissertation has been browsed 5713 times, has been downloaded 20 times.
中文摘要
本篇論文係運用一度空間及二度空間立方樣條差補法(Cubic Spline Interpolation),並結合MPEG壓縮法,來達成對視訊影像做極低位元速率(very low bit-rate)壓縮以及可擴充視訊壓縮 (scalable video compression) 的新技術。
這種CSI插補法與其他插補法的不同之處,是其他插補法在資料取樣時,會直接捨去非取樣點上之原函數值,一但函數重建時會造成較多的誤差。而CSI插補法則在資料取樣時,先利用立方樣條插補函數以及最小平方法,來估算出與原函數之間誤差最小的取樣函數,並事先儲存估算出來誤差最小的取樣函數值,當資料重建時,再用立方迴旋插補法來計算重建函數,因此所獲得的重建函數和原來函數間的總誤差值,將比其它許多插補法來的小。
透過CSI技術配合MPEG-1壓縮標準,將可達成極低位元速率的影像壓縮,這不但能減輕MPEG在高壓縮比時所產生的方塊效應(blocking effect),同時在達成極低位元率的視訊壓縮時,還能保有一定的視訊品質。運用CSI技術亦可達成可擴充的視訊壓縮,這種動態改變資料傳輸速率的壓縮方式,將能有效應用在不同傳輸能力的網路環境之下。

Abstract
This thesis applies the one-dimensional (1-D) and two-dimensional (2-D) cubic-spline interpolation (CSI) schemes to MPEG standard for very low-bit rate video coding. In addition, the CSI scheme is used to implement the scalable video compression scheme in this thesis.
The CSI scheme is based on the least-squares method with a cubic convolution function. It has been shown that the CSI scheme yields a very accurate algorithm for smoothing and obtains a better quality of reconstructed image than linear interpolation, linear-spline interpolation, cubic convolution interpolation, and cubic B-spline interpolation.
In order to obtain a very low-bit rate video, the CSI scheme is used along with the MPEG-1 standard for video coding. Computer simulations show that this modified MPEG not only avoids the blocking effect caused by MPEG at high compression ratio but also gets a very low-bit rate video coding scheme that still maintains a reasonable video quality. Finally, the CSI scheme is also used to achieve the scalable video compression. This new scalable video compression scheme allows the data rate to be dynamically changed by the CSI scheme, which is very useful when operates under communication networks with different transmission capacities.

目次 Table of Contents
中文摘要 …………………………………………………………… i
Abstract ……………………………………………………………. ii
Contents …………………………………………………………….. iii
List of Figures ………………………………………………………. iv
Chapter 1 Introduction ……………………………………………. 1
1.1 Motivation and Related Research ………………………………………… 1
1.2 Summary of the Thesis …………………………………………………… 4
1.3 Organization of The Thesis ………………………………………………. 6
Chapter 2 Technical Preliminaries ………………………………… 7
2.1 Interpolation Functions ……………………………………………………. 7
2.2 CSI Scheme for 1-D Signal ……………………………………………….. 9
2.3 CSI Scheme for 2-D Signal …………………...………………………….. 14
2.4 Reconstructed Function of 1-D CSI Scheme ….…………………………. 20
2.5 Reconstructed Function of 2-D CSI Scheme ….…………………………. 21
Chapter 3 Very Low Bit-Rate Video Coding Scheme …………….. 23
3.1 Modified MPEG Scheme …..……………………………………………… 23
3.1.1 Modified MPEG with 2-D CSI ………..……………………………… 24
3.1.2 Modified MPEG with 3-D CSI ………..……………………………… 25
3.2 Experimental Results …………………………………………………….. 26
3.2.1 Experimental for Modified MPEG with 2-D CSI ………..………….. 26
3.2.2 Experimental for Modified MPEG with 3-D CSI …………………… 36
3.3 The Experiment of H.263 Codec …………………………………………. 41
Chapter 4 Scalable Video Compression Scheme ………………… 45
4.1 New Scalable Video Compression Scheme ………………………………. 45
4.2 Experimental Results for New Scalable Video Compression Scheme ....… 49
Chapter 5 Conclusions and Further Research ……………………. 52
5.1 Conclusions ………………………………………………………………. 52
5.2 Further Research …………………………………………………………. 53
Bibliography ……………………………………………………….. 54
參考文獻 References
[1] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and Didier J. LeGall, MPEG Video Compression Standard, International Thomson Publishing.
[2] ISO/IEC JTC1/SC29/WG11 N3747, Overview of the MPEG-4 Standard, October 2000.
[3] Thomas Sikora, Senior Member, IEEE, “The MPEG-4 Video Standard Verification Model”, IEEE Trans. on Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 19-31, February 1997.
[4] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, January 1998.
[5] Karel Rijkse, KPN Research, “H.263:Video Coding for Low-Bit-Rate Communicaiton,” IEEE Communication Magazine, pp. 42-45, December 1996.
[6] Detlev Marpe and Hans L. Cycon, “Very Low Bit-Rate Video Coding Using Wavelet-Based Techniques,” IEEE Trans. on Circuit and Systems for Video Technology, vol. 9, no.1, pp. 85-94, February 1999.
[7] Jozsef Vass, Student Member, IEEE, Bing-Ging Chai, Member, IEEE, Kannappan Palaniappan, Member, IEEE, and Xinhua Zhuang, Senior Member, IEEE, “Significance-Linked Connected Component Analysis for Very Low Bit-Rate Wavelet Video Coding”, IEEE Trans. on Circuit and System for Video Technology, vol. 9, no. 4, pp. 630-647, June 1999.
[8] Jia Zhike, Cui Huijuan, and Tang Kun, “Adaptive quantization scheme for very low bit rate video coding,” Communications, 1999. APCC/OECC '99. Fifth Asia-Pacific Conference on ... and Fourth Optoelectronics and Communications Conference, Volume: 2 , 1999, Page(s): 940 -943 vol.2.
[9] Touradj Eerahimi, Member, IEEE, Emmanuel Reusens, and Wei Li, “New Trends in Very Low Bitrate Video Coding,” Proceedings of The IEEE, vol. 83, no. 6, June 1995.
[10] T. K. Truong, L. J. Wang, I. S. Reed, and W. S. Hsieh, “Image data compression using cubic convolution spline interpolation,” IEEE Trans. Image Processing, vol. 9, pp. 1988-1995,Nov. 2000.
[11] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. ASSP-29, No.6, pp.1153-1160, Dec. 1981.
[12] H. S. Hou, and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. ASSP-26, No.6, pp.508-517, Dec. 1978.
[13] W. K. Pratt, Digital Image Processing, second edition, John Wiley & Sons, Inc., New York, 1991.
[14] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag, 1978.
[15] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part II-Efficient design and applications,” IEEE Trans. Signal Processing, vol. 41, pp. 834-848, Feb. 1993.
[16] M. Unser, A. Aldroubi, and M. Eden, “Enlargement or Reduction of Digital Images with Minimum Loss of Information,” IEEE Trans. Image Processing, vol. 4, pp. 247-258, March 1995.
[17] I. S. Reed, Notes on Image Data Compression Using Linear Spline Interpolation, Department of Electrical Engineering, University of Southern California, Los Angeles, California, 90089-2565, U.S.A., Nov. 1981.
[18] I. S. Reed and A. Yu, Optimal Spline Interpolation for Image Compression, United States Patent, No. 5822456, Oct. 13, 1998.
[19] E. O. Brigham, The Fast Fourier Transform and its Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
[20] A. V. Oppenheim, and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.
[21] L. J. Wang, W. S. Hsieh, T. K. Truong, I. S. Reed, and T. C. Cheng, “A Fast Efficient Computation of Cubic-Spline Interpolation in Image Codec,” IEEE Trans. on Signal Processing, vol. 49, no. 6, June 2001.
[22] L. J. Wang, “A fast cubic-spline interpolation and its applications,” Ph.D. dissertation, National Sun Yat-Sen University, Taiwan, R.O.C., Mar, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.181.21
論文開放下載的時間是 校外不公開

Your IP address is 3.17.181.21
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code