Responsive image
博碩士論文 etd-0618113-024707 詳細資訊
Title page for etd-0618113-024707
論文名稱
Title
極端氣候對舊鐵橋人工濕地之變遷探討
Impact of extreme climate conditions on the change of the Old Rail Bridge Constructed Wetland
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
138
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-03
繳交日期
Date of Submission
2013-07-18
關鍵字
Keywords
氣候變遷、碳匯、自然生態工法、出流機率法、濕地碳吸存能力
the effluent probability method (EPM), carbon sequestration, climate change, ecological engineering method, constructed wetland
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
人工濕地(constructed wetland)為一種自然生態淨化工法,目前在許多國家廣泛用於處理各種廢水,但近年氣候變遷極端降雨現象頻率增加,使得自然生態工法受到影響,因此,為探討極端氣候對人工濕地之變遷影響,本研究以曾受過風災破壞之舊鐵橋人工濕地為例,探討在受到氣候變遷後復建完成之濕地(包含A、B兩系統)其水質及水文等各項監測參數之變化情形,比較變遷前後處理效益之差異,同時探討此濕地碳吸存能力對減緩氣候變遷之貢獻。研究結果顯示,變遷後之濕地A、B兩系統的平均流量分別為12,091 CMD及4,703 CMD,變遷後平均水力停留時間分別為6.0天及0.7天,變遷前後B系統之水力停留時間差異大而影響去除成效。在變遷後A系統之去除率,生化需氧量(BOD)為37-87%,化學需氧量(COD)為16-89%,氨氮(NH3-N)為43-72%,總氮(TN)為54-80%,總磷(TP)為24-98%,大腸桿菌群(TC)為0-99%,除了懸浮固體物(SS)外,其餘之去除成效皆優於原有濕地;B系統變遷後去除率,TN為10-68%、TP為50-83%及TC為42-93%恢復至與原有濕地相當之成效,其於之監測項目皆不穩定。以出流機率法(effluent probability method, EPM)評估進出流濃度結果得知,在A系統當BOD在高入流濃度時,濕地系統會有較佳的處理效能,而B系統之進出流曲線在多數呈現交錯得知,目前B系統為不穩定狀況。再由B系統變遷前後之濃度以盒鬚圖(box-plot)觀察可知,出流濃度並無達至變遷前之濃度,由此可知雖然有相當去除成效但整體濃度之分佈上未達至預期。由碳匯(carbon sequestration)調查濕地之碳吸存能力可知,B系統之淨初級生產通量為571 g C/m2/yr,水中總有機碳通量為26 g C/m2/yr,最後推估B系統每年碳吸存能力約為9 (t C/yr),若將文獻之土壤異營性呼吸通量及甲烷通量作為參數納入探討,推估舊鐵橋人工濕地B系統每年可減少約2.5 (t C/yr)以上之碳量。由以上研究結果,可作為生態工法之人工濕地處理遭受氣候變遷之破壞下,其復建後淨化廢汙水之去除效益以及人工濕地對碳吸存貢獻之重要參考依據。
關鍵字:氣候變遷、碳匯、自然生態工法、出流機率法、濕地碳吸存能力
Abstract
Constructed wetland (CW) is one of the ecological engineering methods. Currently, using the CW systems to treat a variety of wastewater has been extensively applied in many countries. In this study, the Old Rail Bridge Constructed Wetland was investigated and evaluated its effects on polluted river water quality improvement. Results show that the measured flow rates and hydraulic retention time (HRT) for Systems A and B were 12,091 and 4,703 m3/day, and 6.0 and 0.7 d, respectively. The average removal efficiency for System A ranged from 37-87% for biochemical oxygen demand (BOD), 16-89% for chemical oxygen demand (COD), 43-72% for ammonia nitrogen (NH3-N), 54-80 % for total nitrogen (TN), 24-98% for total phosphorus (TP), and 0-99% for total coliform (TC). Higher removal efficiency for suspended solids (SS), were also observed for System A. The average removal efficiency for System B ranged from 10-68% for total nitrogen (TN), 50-83% for total phosphorus (TP), and 42-93% for total coliform (TC). However, removal efficiencies for other pollutants were unstable. Results from the effluent probability method (EPM) evaluation indicate that the removal efficiency increased with the increase in influent pollutant concentration in System A. Results from the carbon sequestration evaluation show that the wetland carbon sequestration capacity for System B had a net primary production of 571 g C/m2/yr. The average annual total organic carbon (TOC) generation was estimated to be 26 g C/m2/yr for System B. The estimated annual carbon sequestration capacity was about 9 (t C/yr) for system B, which was higher than the estimated annual reduction of approximately 2.5 (t C/yr) from other studies. The experience obtained from this project will be helpful in designing similar wetland systems for water quality improvement and carbon sequestration.

Keyword: the effluent probability method (EPM), carbon sequestration, climate change, ecological engineering method, constructed wetland
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 1
第二章 文獻回顧 3
2.1 濕地概論 3
2.1.1 濕地的定義 3
2.1.2 濕地的結構 6
2.1.3 濕地水文 6
2.1.4 濕地底泥 8
2.1.5 濕地的類型 9
2.2 人工濕地 10
2.2.1 人工濕地的分類及功能 10
2.2.2 淨化水質機制 13
2.2.3 人工濕地的應用 16
2.3 臺灣近年全球暖化及氣候變遷之影響 19
2.3.1 降雨量分佈 20
2.3.2 暴雨發生現象 20
2.3.3 溫度相關差異 21
2.4 碳匯 23
2.4.1 全球碳收支及濕地之碳吸存能力 23
2.4.2 濕地環境中的碳循環 25
2.4.3 濕地碳匯能力的調查方法 28
2.4.4 濕地中不同碳匯介紹 33
第三章 研究設備及方法 35
3.1 場址選定 35
3.1.1 場址背景 35
3.1.2 場址水文及地貌 36
3.2 水文量測與水質監測 40
3.2.1 水文量測 43
3.2.2 水質採樣及分析 45
3.3 處理效益評估方法 47
3.3.1 污染物效益評估 47
3.3.2 出流機率法及盒鬚圖法 48
3.4 濕地的碳質量平衡模式 52
第四章 結果與討論 55
4.1 濕地水文操作參數 55
4.2 變遷下之水質淨化效益 58
4.2.1 基本水質測量 58
4.2.2 污染物去除率 64
4.3 氣候變遷影響 76
4.3.1 變遷前後氣象變化 76
4.3.2 氣候變遷下之水文變化 79
4.3.3 基本水質特性參數探討 81
4.3.4 變遷前後水質參數探討 83
4.4 濕地碳吸收 106
4.4.1 水生植物 106
4.4.2 總有機碳 107
4.4.3 整體碳吸收能力之推估 111
第五章 結論與建議 116
5.1 結論 116
5.2 建議 117
參考文獻 118
參考文獻 References
內政部營建署,2007,國家重要濕地彙編。
內政部營建署城鄉發展分屬,2011,國家重要濕地碳匯功能調查計畫-濕地碳匯功能調查標準作業程序。
王興睿,2011,應用追蹤劑試驗於牡蠣殼礫間接觸水質淨化系統之人工濕地設計與延散效應分析,農業工程學報,第57卷,第3期。
古靜洋,2005,高屏溪右岸舊鐵橋人工濕地的規劃與設計,臺灣濕地雜誌6月號,第57期。
吳文輝,2012,灣裡人工濕地處理社區生活污水之效益評估,嘉南藥理科技大學環境工程與科學系碩士論文。
李威翰、李育儒、陳振正,2012,人工濕地優勢藻種變動與環境因子之關聯性分析,中華民國環境工程學會2012廢水處理技術研討會。
李清縢,2008,臺灣百年氣候趨勢特徵,全球變遷通訊雜誌,第59期,第23-26頁。
汪中和,2004,臺灣降雨的長期變化及對環境的衝擊,自然與文化研討會,行政院農業委員會林業試驗所,三月,臺北,第50-54頁。
沈少文,2011,臺灣地區集水區洪水流量之頻率分析,水保技術,第7期,第11-21頁。
林昀靜、盧孟明,2010,近五十年極端降雨之分析,臺北災害管理研討會論文集,第3-4頁。
林瑩峰、荊樹人、陳欽昭、施凱鐘,2004,人工濕地生態工法在水汙染防治上的應用及案例。
邱文彥,2004,人工濕地及其景觀生態之應用,行政院公共工程委員會編輯生態工法案例編選集第十一章。
金紹興、謝明昌,2001,氣候變遷對臺灣水文環境之影響,新世紀水資源問題研析與對策研討會,第A1 -7頁。
柳中明、吳明進、林淑華、陳盈蓁、楊胤庭、林瑋翔、曾于恆、陳正達,2008,臺灣地區未來氣候變遷預估,國科會研究計畫成果報告。
洪健凱,2010,槽體化生態系統處理畜牧廢水之效果,國立臺南大學環境生態研究所碩士論文。
高雄縣政府,2002,高雄縣政府-高屏溪右岸高屏大橋至舊鐵路橋高灘地綠美化工程規劃設計,整體規劃定案報告書。
高雄市政府環境保護局,2010,高雄縣舊鐵橋人工濕地效益評估計畫,期末報告書。
高雄市政府環境保護局,2011,100年度國家重要濕地(大樹舊鐵橋人工濕地)保育計畫,期末報告書。
高雄市政府環境保護局,2012,101年度國家重要濕地(大樹舊鐵橋人工濕地)保育計畫,期末報告書。
張文賢,2005,建立人工濕地設置與操作作業程序及技術之研究,行政院公共工程委員會,計畫編號930034。
張惠雯,2010,臺灣地區21世紀末之降雨頻率分析,國立臺灣海洋大學河海工程學系碩士學位論文。
莊玉珍、王惠芳,2001,臺灣的濕地,遠足文化,臺北縣新店市。
莊建和,2010,人工濕地碳質量收支平衡及碳匯能力之研究,嘉南藥理科技大學環境工程與科學系碩士論文。
許瑞峰,2009,景觀水池循環流量對人工濕地淨化含氮污染物之影響,行政院國家科學委員會輔助研究計畫研究成果報告。
郭怡婷,2005,臺灣地區歷年溫差變化趨勢及其原因探討-以1954至2003年為例,臺南女子技術學院生活應用科學研究所碩士論文。
陳永森,2010,極端氣候影響下對臺灣環境規劃與災害識覺之省思—以八八水災為例,工程環境會刊,第25期,第33-44頁。
陳有祺,2003,濕地生態工程,滄海書局。
陳宜清,2007,濕地分類及其功能涵容評價之簡介,自然保育季刊,第60期,第3-20頁。
陳亭羽,2012,氣候變遷對桃園地區水稻產量及灌溉需水量之影響,國立中央大學土木工程學系碩士論文。
陳惠玲,2004,非點源汙染控制措施不同方法除汙效率之探討,國立臺北科技大學環境規劃與管理研究所碩士論文。
陳登璟,2012,臺灣地區 1950-2010年極端降雨變化之研究,國立中央大學大氣物理研究所碩士論文。
陳雲蘭,2008,百年來臺灣氣候的變化,科學發展424期。
黃燕儀、翁叔平,2010,臺灣地區日較差的百年變畫(1901-2008),大氣科學,第39卷,第1期,第69-82頁。
經濟部水利署,2009,莫拉克颱風暴雨量及洪流量分析,經濟部水利署。
經濟部水利署,2010,中華民國九十八年臺灣水文年報。
歐文生,2005,生活汙水應用人工濕地處理及再利用之研究,國立成功大學建築研究所博士論文。
歐文生、林憲德、荊樹人,2006,景觀化人工濕地淨化校園汙水效益與公共衛生之研究,建築學報,第56期,第183-202頁。
蔡皓程,2007,垂直流人工濕地氮循環過程研究與操作機制探討,國立中山大學海洋環境及工程學系碩士論文。
盧孟明、陳佳正、林昀靜,2007,1951-2005 年臺灣極端降雨事件發生頻率之變化,大氣科學,第35期,第87-104頁。
錢滄海、楊孟叡、曹舜評、李汴軍,2010,台北測站長時間降雨之趨勢檢定,水土保持學報,第42卷,第3期,第285-304頁。
謝効余,2011,以水平流式生物濾床串連地下流式人工濕地處理養豬廢水可行性之研究,國立中山大學海洋環境及工程學系碩士論文。
謝明奇,2005,自然濕地與人工濕地系統底泥特性之探討,嘉南藥理科技大學環境工程與科學系碩士論文。
鍾佳琪,2010,以垂直流式人工濕地處理含硫酸鹽廢水之研究,國立中山大學海洋環境及工程學系研究所碩士論文。
鍾侑達、郭峻菖、陳昶憲,2009,臺灣地區降雨趨勢分析,農業工程學報,第55卷,第4期,第1-18頁。
魏綺瑪,2009,利用統計降尺度法推估石門水庫集水區未來情境降水研究,成功大學水利及海洋工程研究所碩士論文。
Abou-Elela, S. I., Hellal, M. S. (2012). Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng., 47, 209-213.
Adhikari, U., Harrigan, T., Reinhold, D., Waldhorn, A. A. (2013). Modeling seasonal variation in bacteriophage removal in constructed wetlands using convection–dispersion equation. Ecol. Eng., 54, 266-272.
Alongi, D. M. (2011). Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environ. Sci. Policy., 14, 462-470.
Amengual-Morro, C., Moyà Niell, G., Martínez-Taberner, A. (2012). Phytoplankton as bioindicator for waste stabilization ponds. J. Environ Manage., 95, S71-S76.
Ayaz, C.S., Akca, L. (2000). Treatment of Wastewater by Constructed Wetland in Small Settlement. Water. Sci. Technol., 41, 69-73.
Bailey-Serres, J., Voesenek, L. A. C. J. (2008). Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol., 59, 313-339.
Borin, M., Politeo, M., De Stefani, G. (2013). Performance of a hybrid constructed wetland treating piggery wastewater. Ecol. Eng., 51, 229-236.
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J.J., Rivera-Monroy, V.H. Smith III, T. J., Twilley, R. R. (2008). Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem. Cy., 22, GB2013.
Braskerud, B. C. (2001). The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J. Environ. Qual., 30, 1447-1457.
Cavigelli, M. A., Robertson, G. P. (2000). The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology, 81, 1402-1414.
Daniel M. Alongi (2011). Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science & Policy, 14, 462–470
Davidson, E. A., Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
De Klein, J. J., van der Werf, A. K. (2013). Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol. Eng.
Ding, Y., Song, X., Wang, Y., Yan, D. (2012). Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland. Ecol. Eng. 46, 107–111
Dunne, E. J., Coveney, M. F., Marzolf, E. R., Hoge, V. R., Conrow, R., Naleway, R., Lowe, E. F., Battoe, L. E. (2012). Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida. Ecol. Eng., 42, 90-100.
El-Sheikh, M. A., Saleh, H. I., El-Quosy, D. E., Mahmoud, A. A. (2010). Improving water quality in polluated drains with free water surface constructed wetlands. Ecol. Eng., 36, 1478-1484.
Greenway, M., Woolley, A. (1999). Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol. Eng., 12, 39-55.
Gunes, K., Tuncsiper, B., Ayaz, S., Drizo, A. (2012). The ability of free water surface constructed wetland system to treat high strength domestic wastewater: A case study for the Mediterranean. Ecol. Eng., 44, 278-284.
Gunes, K., Tuncsiper, B., Ayaz, S., Drizo, A. (2012). The ability of free water surface constructed wetland system to treat high strength domestic wastewater: A case study for the Mediterranean. Ecol. Eng., 44, 278-284.
Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., Tsuruta, H. (2005). Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutr. Cycl. Agroecosys., 71, 73-80.
Harrington, R., McInnes, R. (2009). Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresour. technol., 100, 5498-5505.
Hart, K. A. (2006). Evaluation of the nutrient removal efficiency of a constructed wetland system. Doctoral dissertation Texas A&M University.
Hijosa-Valsero, M., Matamoros, V., Pedescoll, A., Martin-Villacorta, J., Becares, E., Garcia, J., Bécaresd E., García, J., Bayona, J. M. (2011). Evaluation of primary treatment and loading regimes in the removal of pharmaceuticals and personal care products from urban wastewaters by subsurface-flow constructed wetlands. International Journal of Environmental and Analytical Chemistry, 91, 632-653.
Hoffmann, C. C., Heiberg, L., Audet, J., Schønfeldt, B., Fuglsang, A., Kronvang, B., Ovesena, N. B., Kjaergaardd, C., Hansene, H. C. B., Jensen, H. S. (2012). Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecol. Eng., 46, 75-87.
Hsu, H. H., Chen, C. T. (2002). Observed and projected climate change in Taiwan. Meteorol. Atmos. Phys., 79, 87-104.
Hu, M. H., Ao, Y. S., Yang, X. E., Li, T. Q. (2008). Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatic Forsskal) in a deep flow technique system. Agr. Water Manage., 95, 607-615.
IPCC (2007). Climate Change 2007: The Physical Science Basis. The AR4Synthesis Report.
Jing, S. R., Lin, Y. F. (2004). Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environ. Pollut., 127, 291-301.
Jing, S. R., Lin, Y. F., Shih, K. C., Lu, H. W. (2008). Applications of constructed wetlands for water pollution control in Taiwan: review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12, 249-259.
Kadlec, R. H. (2005). Phosphorus removal in emergent free surface wetlands. Journal of environmental science and health, 40, 1293-1306.
Kadlec, R. H., Knight, R. L., Vymazal, J., Brix, H., Cooper, P., Haberl, R. (2000). Constructed wetlands for pollution control. Process, performance, design and operation. IWA Scientific and Technical Report.
Kadlec, R. H., Reddy, K. R. (2001). Temperature effects in treatment wetlands. Water Environ. Res., 543-557.
Kadlec, R. H., Wallace, S. (2008). Treatment wetlands. CRC press.
Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A. (2010). Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands, 30, 111-124.
Kivaisi, A. K. (2001). The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol. Eng., 16, 545-560.
Kotti, I. P., Sylaios, G. K., Tsihrintzis, V. A. (2013). Fuzzy logic models for BOD removal prediction in free-water surface constructed wetlands. Ecol. Eng., 51, 66-74.
Kynkäänniemi, P., Ulén, B., Torstensson, G., Tonderski, K. S. (2013). Phosphorus Retention in a Newly Constructed Wetland Receiving Agricultural Tile Drainage Water. J. Environ. Qual., 42, 596-605.
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and foodsecurity. Science, 304, 1623–1627.
Landman, W. (2010). Climate change 2007: the physical science basis.
Li, E. H., Li, W., Liu, G. H., Yuan, L. Y. (2008). The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake. Aquat. Bot., 88, 121-126.
Lièvremont, D., Bertin, P. N., Lett, M. C. (2009). Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie, 91, 1229-1237.
Luyssaert, S., Schulze, E. D., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., Grace, J. (2008). Old-growth forests as global carbon sinks. Nature, 455, 213-215.
Maltby, E. (2009). Functional assessment of wetlands: towards evaluation of ecosystem services. Woodhead Publishing Ltd.
McCartney, M., Morardet, S., Rebelo, L. M., Finlayson, C. M., Masiyandima, M. (2011). A study of wetland hydrology and ecosystem service provision: GaMampa wetland, South Africa. Hydrological Sciences Journal, 56, 1452-1466.
MEA (Millennium Ecosystem Assessment) (2005). Ecosystems and human well-being: Wetlands and water synthesis. Washington DC: World Resources Institute.
Merz, S. K. (2000). Guidelines for using free water surface constructed wetlands to treat municipal sewage. Department of Natural Resources.
Mitsch, W. J., Gosselink, J. G. (2007). Wetlands, 4th ed., John Wiley, Hoboken, N. J
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R.B., Pacala, S. W., A. McGuire, D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
Parry, M. L. (Ed.). (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4). Cambridge University Press.
Puigagut, J., Maltais-Landry, G., Gagnon, V., Brisson, J. (2012). Are ciliated protozoa communities affected by macrophyte species, date of sampling and location in horizontal sub-surface flow constructed wetlands? Water Res., 46, 3005-3013.
Reeder, B. C. (2011). Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands complex, Kentucky (USA). Ecological Engineering, 37, 1772-1778.
Rothman, E., Bouchard, V. (2007). Regulation of carbon processes by macrophyte species in a Great Lakes coastal wetland. Wetlands, 27, 1134-1143.
Saunders, D. L., Kalff, J. (2001). Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 443, 205-212.
Selma, C., Akca, L. (2001), Treatment of wastewater by natural system. Environ. Int., 26, 189-195.
Sirianuntapiboon, S., Kongchum, M., Jitmaikasem, W. (2006). Effects of hydraulic retention time and media of constructed wetland for treatment of domestic wastewater. African Journal of Agricultural Research, 1, 27-37.
Smedley, P. L., Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., 17, 517-568.
Song, K., Kang, H., Zhang, L., Mitsch, W. J. (2012). Seasonal and spatial variations of denitrification and denitrifying bacterial community structure in created riverine wetlands. Ecol. Eng., 38, 130-134.
Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W., Xu, M. (2006). Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecol.Eng., 26, 272-282.
Taleno.V.C., Torre, C.A.D.L., Sturm, M. Kuschk.P. (2012). Comparison of two constructed wetland with different soil depth in relation to their nitrogen removal. Cologne University of Applied Science, Cologne,Germany.
Taylor, C. R., Hook, P. B., Stein, O. R., Zabinski, C. A. (2011). Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecol. Eng., 37, 703-710.
Toda, M., Takata, K., Nishimura, N., Yamada, M., Miki, N., Nakai, T., Uemura, S., Sumida, T. W. A., Hara, T. (2011). Simulating seasonal and inter-annual variations in energy and carbon exchanges and forest dynamics using a process-based atmosphere–vegetation dynamics model. Ecol Res, 26, 105-121.
Trumbore, S. E., Bubier, J. L., Harden, J. W., Crill, P. M. (1999). Carbon cycling in boreal wetlands: A comparison of three approaches. J. Geophys. Res.: Atmospheres (1984–2012), 104, 27673-27682.
Verhoeven, J. T., Meuleman, A. F. (1999). Wetlands for wastewater treatment: Opportunities and limitations. Ecol. Eng., 12, 5-12.
Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Sci. f the total environ., 380, 48-65.
Vymazal, J. (2010). Constructed Wetlands for Wastewater Treatment: Five Decades of Experience. Environ. Sci. & technol., 45, 61-69.
Wallén, B. (1992). Methods for studying below-ground production in mire ecosystems. Suo., 43, 155-162.
Wang, C. D., Fu, H. X. (2012). Effect of Hydraulic Loading on Removal Efficiency of the Folds Stable Surface Flow Wetland. Advanced Materials Research, 356, 1055-1060.
Wang, W., Gao, J., Guo, X., Li, W., Tian, X., Zhang, R. (2012). Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river. Ecol. Eng., 49, 93-103.
Wen, Y., Xu, C., Liu, G., Chen, Y., Zhou, Q. (2012). Enhanced nitrogen removal reliability and efficiency in integrated constructed wetland microcosms using zeolite. Frontiers of Environmental Science & Engineering, 6, 140-147.
Werker, A. G., Dougherty, J. M., McHenry, J. L., Van Loon, W. A. (2002). Treatment variability for wetland wastewater treatment design in cold climates. Ecol. Eng., 19, 1-11.
Whiting, G. J., Chanton, J. P. (2001). Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B, 53, 521-528.
Wu, H., Zhang, J., Li, P., Zhang, J., Xie, H., Zhang, B. (2011). Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol. Eng., 37, 560-568
Yu, Z., (2011). Holocene carbon flux histories of the world’s peatlands Global carbon-cycle implications. The Holocene, 21, 761-774.
Zhang, C. B., Liu, W. L., Wang, J., Ge, Y., Gu, B. H., Chang, J. (2013). Effects of plant diversity and hydraulic retention time on pollutant removals in vertical flow constructed wetland mesocosms. Ecol. Eng., 49, 244–248
Zhang, D. Q., Tan, S. K., Gersberg, R. M., Zhu, J., Sadreddini, S., Li, Y. (2012). Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J. Environ. Manage., 96, 1-6.
Zhang, W. J., Xiao, H. A., Tong, C. L., Su, Y. R., Xiang, W. S., Huang, D. Y., Syers, J. K., Wu, J. (2008). Estimating organic carbon storage in temperate wetland profiles in Northeast China. Geoderma, 146, 311-316.
Zhou, L., Dai, A., Dai, Y., Vose, R. S., Zou, C. Z., Tian, Y., Chen, H. (2009). Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim. Dynam., 32, 429-440.
Zhou, L., Dickinson, R. E., Dirmeyer, P., Dai, A., Min, S. K. (2009). Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations. Geophys Res. Lett., 36, L02702.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.211.66
論文開放下載的時間是 校外不公開

Your IP address is 18.191.211.66
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code