Responsive image
博碩士論文 etd-0618113-095517 詳細資訊
Title page for etd-0618113-095517
論文名稱
Title
以分子動力學模擬探討分子排列對聚芳香醚高分子特性的影響
Investigation on the Molecular Arrangement Properties of Poly(arylene ether)s by Molecular Dynamic Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-09
繳交日期
Date of Submission
2013-07-18
關鍵字
Keywords
燃料電池、質子交換膜、分子動力模擬
Molecular Dynamics, proton exchange membrane, fuel cell
統計
Statistics
本論文已被瀏覽 5727 次,被下載 0
The thesis/dissertation has been browsed 5727 times, has been downloaded 0 times.
中文摘要
多苯環結構的聚芳香醚高分子是一個具有高度立體障礙性的結構,搭配不同的官能基團在結構上能有更多磺酸根接枝的位置,可具有較大的離子交換量 (Ion Exchange Capacity,IEC),且經由高分子主鏈結構的剛性設計,能擁有良好的熱穩定性及機械性質,近年來已被研究應用在燃料電池的質子交換膜上。而分子動力學模擬 (Molecular Dynamics Simulation) 是利用電腦模擬的方式,研究分子或原子在一段時間內的運動情形,現今已被廣泛應用在材料,生化,機械,及藥物研究。
本論文以具有高度立體障礙性的九苯環二醇為主體,搭配兩種不同二氟單體作為主要模擬的材料 (SP、JSP),分別在溶劑為DMAC與H2O中進行模擬,觀察其微相分離型態與原子間分布情形,進而比較兩種高分子在質子導電度上之優劣。其結果可知,在DMAC系統中,SP高分子所形成的團簇 (cluster) 較為明顯,分子間的空間寬裕,而JSP高分子則顯得擁擠,相分離程度不比SP來的明顯。而在H2O系統中,SP高分子在單位範圍內的磺酸根個數雖較少,但其具有的高度立體障礙性結構,能容下更多的水分子,使得氫質子能在磺酸根與水分子間傳遞,而JSP高分子結構的共平面性,相對壓縮了水分子分布的空間,所聚集的水分子較少,因此我們推估在質子導電度上SP高分子會來的比JSP優異,這結果也與實驗上所測得的質子導電度相符。
Abstract
The poly aromatic ether polymer of multi-benzene ring is a high steric hindrance structure. By matching different functional groups, they can offer more position that sulfonated acid group grafted, and owning a high Ion Exchange Capacity (IEC). After designing the rigid structure of polymer main chain, the polymer will be good thermal stability and mechanical properties. Over the past year, these materials have been the subject of many research studies on Proton exchange membrane fuel cell (PEMFC).Molecular dynamic simulations (MD) is a computer simulation of physical movements of atoms and molecules. MD has now been widely used in materials, biochemical and pharmaceutical research.
In this study, we adopt the structure of a high degree of nine benzenoid bisphenol with steric hindrance as the main body, with two different bisfluoro monomers for the materials of simulated (SP、JSP). We prepare two kinds of solvent system for simulation, which are DMAC and H2O, to observe the microphase separation and distribution of atoms, and further compare the proton conductivity of two materials. The result shows that the cluster of SP is more pronounced than JSP on DMAC system. We find the intermolecular of SP is so commodious than JSP that there are more water aggregate nearby sulfonated acid group. In H2O system, even though the sulfonated acid group of SP is less than JSP in cutoff radius, there are more water around sulfonated acid group for steric hindrance structure and let hydronium ions transport between sulfonated acid group and water. The intermolecular space of JSP is narrow for coplanar structure, so there is less water around sulfonated acid group. For these reasons, we inferred the proton conductivity of SP is better than JSP, and the tendency conformed to the experiment data.
目次 Table of Contents
致謝 iii
摘要 iv
Abstract v
目錄 vii
表目錄 ix
圖目錄 x
第壹章 緒論 1
1.1 前言 1
1.2 燃料電池之發展與類別 1
1.3 質子交換膜燃料電池工作原理 5
1.4 質子交換膜特性文獻回顧 7
1.5 分子動力模擬 17
1.6 研究動機 18
第貳章 理論方法 20
2-1 模擬方法 20
2-1-1 簡介 20
2-1-2 分子動力學基本架構 22
2-2 系統作用力場 25
2-3 數值方法 26
2-3-1 Verlet’s Algorithm[64]-[66] 28
2-3-2 Leap-Frog Algorithm[64]-[66] 29
2-3-3 Velocity Verlet Algorithm[64]-[66] 30
2-3-4 Beeman’s Algorithm[64]-[66] 31
2-3-5 Gear’s Predictor-Corrector algorithm [64]-[66] 32
2-4 模擬系統的設定 34
2-5 週期性邊界條件 35
2-6 Rescaling溫度修正 38
2-7 分子動力學模擬的流程 39
第參章 系統建構方法及參數設定 40
3-1系統建構 40
3-1-1 主體材料 40
3-1-2 分子個數設定 43
3-2 參數設定 45
3-2-1 結構最佳化參數設定 46
3-2-2 分子動力模擬參數設定 46
第肆章 結果與討論 47
4-1 SP分子在溶劑DMAC中特性分析 47
4-2 SP分子在溶劑H2O中特性分析 57
4-3 JSP分子在溶劑DMAC中特性分析 66
4-4 JSP分子在溶劑H2O中特性分析 73
第伍章 結論 83
第陸章 參考文獻 84
參考文獻 References
[1] S. A. Marcott, J. D. Shakun, P. U. Clark, A. C. Mix, A reconstruction of regional and global temperature for the past 11,300 years, Science, 399(2013), pp.1198-1201
[2] N. J. Abram, R. Mulvaney, E. W. Wolff, J. Triest, S. Kipfstuhl, L. D. Trusel, F.Vimeux, L. Fleet, C. Arrowsmith, Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century, Nature Geoscience, 6(2013), pp.404-411
[3] 台灣燃料電池資訊網, http://www.tfci.org.tw/. (2011)
[4] W. R.Grove, On voltaic series and the combination of gases by platinum The London and Edinburgh Philosophical Magazine and Journal of Science, Ser. 3, 14(1839), pp.127-130
[5] W. R. Grove, On a gaseous voltaic battery , The London and Edinburgh Philosophical Magazine and Journal of Science, Ser. 3, 21(1842), pp.417-420
[6] 吳千舜,諸柏仁 燃料電池質子交換膜的最新發展, Chemistry(The chinses chem.soc.,taipei) March, Vol. 62, No. 1 (2004), pp.123-138
[7] P. Choi, N. H. Jalani, T. M. Thampan, R. Datta, Consideration of thermodynamic, transport, and mechanical properties in the design of polymer electrolyte membranes for higher temperature fuel cell operation, J. Polymer Sci. Part B, 44(2006), pp.2183-2200
[8] C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee, Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Progress in Polymer Science, 36(2011), pp.1443-1498.
[9] J. Pozuelo, E. Riande, E. Saiz, V. Compan, Molecular Dynamics Simulations of Proton Conduction in Sulfonated Poly(phenyl sulfone)s, Macromolecules, 39(2006), pp.8862-8866
[10] P. Gode, A. Hult, P. Jannasch, M. Johansson, L.E. Karlsson,G. Lindbergh, E. Malmström, D. Sandquist, A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes, Solid State Ionics, 177(2006), pp.787-794
[11] M. Rikukawa, K. Sanui, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci., 25(2000), pp.1463–1502.
[12] S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, M. Guiver, Properties of SPEEK based PEMs for fuel cell application, Catalysis Today, 82 (2003), pp.213–222
[13] S.M. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, Journal of Membrane Science, 173(2000), pp.17-34.
[14] S. D. Mikhailenko, S. M. Zaidi, S. Kaliaguine, Sulfonated polyether ether ketone based composite polymer electrolyte membranes, Catalysis Today, 67(2001), pp.225–236.
[15] M. Gil, X. Ji, X. Li, H. Na, J.E. Hampsey, Y. Lu, Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications, Journal of Membrane Science, 234(2004), pp.75–81.
[16] T. Xu, D. Wu, L. Wu, Poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)—a versatile starting polymer for proton conductive membranes (PCMs), Progress in Polymer Science, 33(2008), pp.894–915
[17] H. Ahmad, S.K. Kamarudin, U.A. Hasran, W.R.W. Daud, Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrogen Energy, 35(2010), pp.2160–2175.
[18] C.V. Mahajan ,V. Ganesan, Atomistic Simulations of Structure of Solvated Sulfonated Poly(ether ether ketone) Membranes and Their Comparisons to Nafion: I. Nanophase Segregation and Hydrophilic Domains, J. Phys. Chem. B, 114(2010), pp.8357–8366
[19] C.V. Mahajan, V. Ganesan, Atomistic Simulations of Structure of Solvated Sulfonated Poly(ether ether ketone) Membranes and Their Comparisons to Nafion: II. Structure and Transport Properties of Water, Hydronium Ions, and Methanol, J. Phys. Chem. B, 114(2010), pp.8367–8373
[20] G. Bahlakeh, M. Nikazar, M.-J. Hafezi, E. Dashtimoghadam, M.M. HasaniSadrabadi, Molecular dynamics simulation study of proton diffusion in polymer electrolyte membranes based on sulfonated poly(ether ether ketone), Int. J. Hydrogen Energy, 37(2012), pp.10256–10264.
[21] S. Zhu, L. Yan, D. Zhang, Q. Feng, Molecular dynamics simulation of microscopic structure and hydrogen bond network of the pristine and phosphoric acid doped polybenzimidazole, Polymer, 52(2011), pp.881–892
[22] J. Pozuelo, E. Riande, E. Saiz, V. Compan, Molecular dynamics simulations of proton conduction in sulfonated poly(phenyl sulfone)s, Macromolecules, 39(2006), pp.8862–8866.
[23] K. Matsumoto, T. Higashihara, and M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer, 50(2009), pp.5341-5357.
[24] E. M. W. Tsang, Z. Zhang, A. C. C. Yang, Z. Shi, T. J. Peckham, R. Narimani, B.J. Frisken, S.Holdcroft, Nanostructure, Morphology, and Properties of Fluorous Copolymers Bearing Ionic Grafts, Macromolecules, 42(2009), pp.9467-9480.
[25] K. Miyatake, A. S. Hay, Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings J. Polym. Sci. Part A: Polym. Chem., 39(2001), pp.3211-3217.
[26] K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, Hay, Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers, Macromolecules, 34(2001), pp.2065-2071.
[27] S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, A. S. Hay, Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups:  Novel Linear Aromatic Poly(sulfide−ketone)s, Macromolecules, 41(2008), pp.277-280.
[28] S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A. S. Hay, Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups:  Novel Branched Poly(ether−ketone)s, Macromolecules, 41(2008), pp.281-284.
[29] S. Matsumura, A. R. Hlil, N. Du, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A. S. Hay, Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: Novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups, Journal of Polymer Science Part A: Polymer Chemistry, 46(2008) pp.3860-3868.
[30] S. Matsumura, A. R. Hlil, S. Matsumura, A. R. Hlil, A. S. Hay, Synthesis, properties, and sulfonation of novel dendritic multiblock copoly(ether-sulfone), Journal of Polymer Science Part A: Polymer Chemistry, 46(2008), pp.6365-6375.
[31] S. Matsumura, A. R. Hlil, M. A. K. Al-Souz, J. Gaudet, D. Guay, A. S. Hay, Ionomers for proton exchange membrane fuel cells by sulfonation of novel dendritic multiblock copoly(ether-sulfone)s, Journal of Polymer Science Part A: Polymer Chemistry, 47(2009), pp.5461-5473.
[32] S. Tian, Y. Meng, A. S. Hay, Membranes from Poly(aryl ether)-Based Ionomers Containing Randomly Distributed Nanoclusters of 6 or 12 Sulfonic Acid Groups, Macromolecules, 42(2009), pp.1153-1160.
[33] S. Tian, Y. Meng, A. S. Hay, Membranes from poly(aryl ether)-based ionomers containing multiblock segments of randomly distributed nanoclusters of 18 sulfonic acid groups, Journal of Polymer Science Part A: Polymer Chemistry, 47(2009), pp.4762-4773.
[34] Dongyang Chen, Shuanjin Wang, Min Xiao, Yuezhong Meng, Allan S. Hay, Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stablemembranes, J. Mater. Chem., 21(2011), pp.12068-12077.
[35] B. J. Alder, T. E. Wainwright, Phase Transition for a Hard Sphere System, J. Chem. Phys., 27(1957), pp.1208-1209.
[36] A. Rahman, Correlations in the Motion of Atoms in Liquid Argon, Phys. Rev., 136(1964), A405-A411.
[37] K. Kremer, G. S. Grest, Dynamics of entangled linear polymer melts:  A molecular‐dynamics simulation, J. Chem. Phys., 92(1990), pp.5057-5086.
[38] A. D. MacKerell, D. Bashford, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem. B, 102(1998), pp.3586-3616.
[39] D. Kozono, M. Yasui, L. S. King, P. Agre, Aquaporin water channels: atomic structure molecular dynamics meet clinical medicine, J Clin Invest., 109(2002), pp.1395–1399
[40] D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, H. Gleiter, Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?, Acta Materialia, 53(2005), pp.1-40.
[41] W. F. Gunsteren, H. J. C. Berendsen, Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry, Angew. Chem. Int. Ed. Engl., 29(1990), pp.992-1023.
[42] M. C. Payne, M. P. Teter, et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64(1992), pp.1045-1097
[43] S. B. Fowler, R. B. Best, et al., Mechanical Unfolding of a Titin Ig Domain: Structure of Unfolding Intermediate Revealed by Combining AFM, Molecular Dynamics Simulations, NMR and Protein Engineering, J. Mol. Biol., 322(2002), pp.841-849.
[44] G. D. Harp, B. J. Berne, Linear‐ and Angular‐Momentum Autocorrelation Functions in Diatomic Liquids, J. Chem. Phys., 49(1968), pp.1249-1254.
[45] A. Rahman, F. H. Stillinger, Molecular Dynamics Study of Liquid Water, J. Chem. Phys., 55(1971), pp.3336-3359.
[46] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117(1995), pp.1-19.
[47] S. Plimpton, B. Hendrickson, A new parallel method for molecular dynamics simulation of macromolecular systems, J. Comput. Chem., 17(1996), pp.326-337.
[48] H. J. C. Berendsen, D. Spoel, R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun., 91(1995), pp.43-56.
[49] M. F. Crowley, T. A. Darden, et al., Adventures in Improving the Scaling and Accuracy of a Parallel Molecular Dynamics Program, Journal of Supercomputing, 11(1997), pp.255-278.
[50] L. Kale, R. Skeel, et al., NAMD2: Greater Scalability for Parallel Molecular Dynamics, J. Comput. Phys., 151(1999), pp.283-312.
[51] W. Y. Huang, B. R. Liaw, M. Y. Chang, Y. K. Han, P. T. Huang, High Glass-Transition Temperature and Organosoluble Novel Arylene Ether Polymers, Macromolecules, 40(2007), pp.8649-8657.
[52] W. Y. Huang and S. Y. Huang,Sterically Encumbered Fluorene-Based Poly(arylene ether)s Containing Spiro-Annulated Substituents on the Main Chain, Macromolecules, 43(2010), pp.10355-10365.
[53] B. R. Liaw, W. Y. Huang, P. T. Huang, M. Y. Chang, Y. K. Han, Novel poly(arylene ether)s containing multi-substituted pentaphenylene moiety, Polymer, 48(2007), pp.7087-7097.
[54] W. Y. Huang, M. Y. Chang, Y. K. Han and P. T. Huang, Sterically encumbered poly(arylene ether)s containing spiro-annulated substituents: Synthesis and thermal properties, J. Polym. Sci. Part A: Polym. Chem., 48(2010), pp.5872-5884.
[55] M.Kotrla, Numerical simulations in the theory of crystal growth, Com. Phys. Comm., 97(1996), pp 82-100
[56] H.N.G. Wadley, X.Zhou, R.A.Johnson, M.Neurock, Mechanisms, models and methods of vapor deposition, Progress in Materials Science, 46(2001), pp.329-377
[57] N. Metropolis, A. W. Rosenbluth , M. N. Rosenbluth, A. H. Teller, E. Teller , Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21(1953), pp.1087-1092
[58] J. H. Irving,J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys., 18(1950), pp.817-829
[59] J. P. Ulmschneider, W. L. Jorgensen, Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation, J. Am. Chem. Soc., 126(2004), pp.1849-1857
[60] N. Nevins, K. Chen, N. L. Allinger, Molecular mechanics (MM4) calculations on alkenes, Journal of Computational Chemistry, 17(1996), pp.669-694
[61] M. Crowley, T. Darden, T. Cheatham , D. Deerfield, Adventures in Improving the Scaling and Accuracy of a Parallel Molecular Dynamics Program, Journal of Supercomputing , 11(1997), pp.255-278
[62] S. Plimpton, B. Hendrickson ,A new parallel method for molecular dynamics simulation of macromolecular systems, J. Comput. Chem., 17(1996), pp.326-337
[63] A. K. Rappé, C. J. Casewit, K. S. Colwell , W. A. Goddard III, W. M. Skiff , UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114(1992), pp.10024-10035
[64] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York.(1997)
[65] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London. (2004)
[66] 陳正隆,徐為人,湯立達,分子的模擬的理論與實踐, 化學工業出版社(2007)
[67] M. Levitt, H. Meirovitch, Integrating the equations of motion, Journal of Molecular Biology, 168(1983), pp.617–620
[68] H. Bashir, J.L. Acosta, A. Linares, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185(2001), pp.29–39.
[69] S.S. Jang, W.A. Goddard, Structures and transport properties of hydrated water-soluble dendrimer-grafted polymer membranes for application to polymer electrolyte membrane fuel cells: Classical molecular dynamics approach, J. Phys. Chem. C, 111(2007) , pp.2759–2769.
[70] G. Bahlakeh, M. Nikazar, M. Mahdi H. Sadrabadi, Understanding structure and transport characteristics in hydrated sulfonatedpoly(ether ether ketone)–sulfonated poly(ether sulfone) blend membranesusing molecular dynamics simulations, Journal of Membrane Science, 429(2013), pp.384–395
[71] J. Pozuelo, E. Riande, E. Saiz, and V. Compan Molecular Dynamics Simulations of Proton Conduction in Sulfonated Poly(phenyl sulfone)s, Macromolecules, 39(2006), pp.8862 – 8866
[72] C. H. Park, C. H. Lee, J. Y. Sohn, H. B. Park, M. D. Guiver, Y. M. Lee, Phase Separation and Water Channel Formation in Sulfonated Block Copolyimide, J. Phys. Chem. B, 114(2010), pp.12036–12045
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.47.253
論文開放下載的時間是 校外不公開

Your IP address is 3.145.47.253
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code