Responsive image
博碩士論文 etd-0618113-140203 詳細資訊
Title page for etd-0618113-140203
論文名稱
Title
以水溶液法備製氧化鋅奈米針於多晶矽太陽能電池之特性研究
Characterization of Zinc Oxide Nanotip Array Prepared by Aqueous Solution Deposition on Poly-Si Solar Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-12
繳交日期
Date of Submission
2013-07-18
關鍵字
Keywords
氧化鋅、奈米針、蛾眼效應、水溶液沉積法、抗反射層、太陽電池
aqueous solution deposition (ASD), anti-reflection, nanotip, zinc oxide (ZnO), moth eye principle, solar cell
統計
Statistics
本論文已被瀏覽 5662 次,被下載 0
The thesis/dissertation has been browsed 5662 times, has been downloaded 0 times.
中文摘要
在本篇研究論文中,我們在基板上以濺鍍方式沉積氧化鋅成核層,再以水溶液沉積法生長氧化鋅奈米針,並對其做了相關的物性、光性、化性等特性分析。在不同基板上濺鍍氧化鋅成核層,探討晶格不匹配影響氧化鋅成核層的結晶型態,再間接影響氧化鋅奈米針的生長,晶格常數越接近氧化鋅的基板可提升氧化鋅成核層結晶化的強度。氧化鋅奈米針在光致螢光 (PL)的分析可以得知,氧化鋅奈米結構的紫外光激發峰值的位置約位於375 nm,在綠-黃色光 (550~650 nm)有小峰值的出現,文獻指出為氧化鋅內部缺陷,經由實驗得知笑氣回火處理可以填補氧化鋅內部缺陷而降低峰值。並在水溶液生長氧化鋅奈米針時照射紫外光參與反應,利用紫外光激發氧化鋅成核層產生電子電洞對,其中電洞會幫助水溶液中的氨水分解,而加快氧化鋅奈米針生長速度。氧化鋅奈米針可利用其粗化表面和光學影響的特性,在應用上可當作抗反射層。本實驗中將利用氧化鋅奈米針應用於多晶矽太陽電池上,利用氧化鋅奈米針當抗反射層以增加光穿透率,提升太陽能電池之效率。
我們利用掃描式電子顯微鏡探討表面形態,X射線光電子能譜儀探討元素比例與表面特性,微螢光光譜量測探討吸收光譜,電流-電壓曲線量測探討太陽電池特性與光電轉換效率。 實驗結果顯示,短路電流從未處理的40.49 mA提升至44.01 mA,轉換效率從未處理的13.388%,經處理提升至 14.4%。

關鍵字: 水溶液沉積法, 氧化鋅, 奈米針, 蛾眼效應, 抗反射層, 太陽電池
Abstract
In this study, zinc oxide (ZnO) nanotip array will be grown on ZnO nucleation layer by aqueous solution deposition (ASD). Characteristic of the ZnO nanotip array will be investigated. We will discuss the lattice mismatch that affect the crystallization of ZnO nucleation layer and morphology of ZnO nanotip array. The PL analysis of ZnO nanotip array shows the typical emissions of narrow exciton related UV band peak at 375 nm and broad defect related green–yellow (550~650 nm) bands. The green-yellow emission (550~650 nm) is likely due to O vacancies and the emission is improved after N2O annealing at 300 oC. Under UV light illumination, the electron-hole pairs are generated in ZnO by the photoexcitation and then the pairs diffuse to the surface. Holes could enhance the decomposition of ammonia and hence the concentration of OH- will be increased. The growth rate of ZnO nanotip array could be enhanced because of the ultraviolet light illumination. ZnO nanotip array with rough surface decreases reflection, so we use ZnO nanotip array as an anti-reflection layer. After coating ZnO nanotip array on solar cell, the efficiency of solar cell is enhanced.
The morphology is observed by field emission scanning electron microscope (FE-SEM). The physical properties are characterized by X-ray diffraction (XRD). The optical properties are measured by Micro-photoluminescence (Micro-PL). The performance of the cells is measured by a semiconductor device analyzer. In our results, we grow the high performance of ZnO nanotip array on solar cell to increase the efficiency. The short-circuit current is increased from 40.49 to 44.01 mA, and the efficiency is increased from 13.388 to 14.4%.

Keywords: aqueous solution deposition (ASD), zinc oxide (ZnO), nanotip, moth eye principle, anti-reflection, solar cell
目次 Table of Contents
論文審定書 I
ACKNOWLEDGEMENT II
中文摘要 III
ABSTRACT IV
CONTENTS VI
LIST of FIGURES IX
LIST of TABLES XII
Chapter 1 1
Introduction 1
1.1 Properties of ZnO 1
1.2 Anti-reflective layer 2
1.2.1 Anti-reflective layer of ZnO nanotip array 2
1.2.2 Anti-reflection coating – “Moth eye” principle 3
1.2.3 Structure conditions for moth eye effect 4
1.2.4 Effective medium theories 5
1.2.5 Effective refractive index 6
1.3 Syntheses of ZnO nanotip array 10
1.4 Advantages of aqueous solution deposition (ASD) 11
1.5 Motivation 12
Chapter 2 18
Experiments 18
2.1 Substrate cleaning procedures 18
2.2 RF nucleation layer prepared by RF sputtering 20
2.2.1 Sputtering mechanism 20
2.2.2 RF sputtering for ZnO nucleation 21
2.3 ASD of ZnO nanotip array 23
2.3.1 Deposition process 23
2.3.2 Upside down process 23
2.4 Growth process of ASD-ZnO nanotip array 24
2.5 Basic mechanism of ZnO nanotip array 25
2.6 Characterization 26
2.6.1 Physical properties 26
2.6.2 Optical properties 28
2.6.3 Chemical properties 30
2.6.4 Current-voltage (I-V) Measurement 30
Chapter 3 36
Results and Discussion 36
3.1 Morphology of ASD-ZnO nanotip array 36
3.1.1 Conditions for the formation of wurtzite ZnO nanotip 36
3.1.2 Film-like layer 38
3.1.3 Crystallization of sputtering ZnO 39
3.2 Characterization of ASD-ZnO nanotip array 42
3.2.1 XRD spectra of ASD-ZnO nanotip array 42
3.2.2 Micro PL spectra of ASD-ZnO nanotip array 42
3.2.3 ESCA spectrum of ZnO nanotip array 43
3.3 Growth rate enhancement of ASD-ZnO nanotip array by UV illumination 44
3.3.1Characterization of ASD-ZnO nanotip array by UV illumination 44
3.3.2 Mechanism of ASD-ZnO nanotip array by UV illumination 47
3.4 Characterization of ASD-ZnO nanotip array on poly-Si solar cell 48
3.4.1 ZnO Sputtering affects poly-Si solar cell 49
3.4.2 The effect of Preheating ASD-ZnO nanotip array 50
3.4.3 Performance of solar cell with ZnO nanotip array 51
Chapter 4 79
Conclusions 79
References 80
參考文獻 References
References
1. J. Pearton, D. P. Nortona, K. Ip, Y. W. Heo and T. Steiner, "Recent progress in processing and properties of ZnO," Progress in Materials Science, Vol. 50, Issue 3, March 2005, pp. 293-340.
2. kipedia http://en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png
3. Y. S. Wang, P. John Thomas, and P. O'Brien, J. Phys. Chem. B, 2006, 110 (43), pp 21412–21415.
4. T. Minami, H. Sato, H. Nanto and S. Takata, "Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering," Jpn. J. Appl. Phys. 24 (1985) pp. L781-L784.
5. Z. L. Wang, Nanostructures of zinc oxide, Materials Today, 2004
6. W. S. Wang, T. T. Wu, T. H. Chou and Y. Y. Chen, "A ZnO nanorod-based SAW oscillator system for ultraviolet detection," Nanotechnology 20 (2009) 135503.
7. M. A. Mastro, L. Mazeina, B. J. Kim, S. M. Prokes, J. Hite, C. R. Eddy Jr. and J. Kim, "Vertical zinc oxide nanowires embedded in self-assembled photonic crystal," Photonics and Nanostructures - Fundamentals and Applications Vol. 9, Issue 1, February 2011, Pages 91-94.
8. M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, S. W. Kim, "Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods," Advanced Materials, Vol. 21, Issue 21, pp. 2185–2189, June 5, 2009.
9. X. l. Bai, N. Pan, X. P. Wang and H. Q. Wang, "Synthesis and Photocatalytic Activity of One-dimensional ZnO-Zn2SnO4 Mixed Oxide Nanowires," Chinese J. Chem. Phys., Vol. 21 No. 1.
10. H. Chen, A. D. Pasquier, G. Saraf, J. Z. and Y. Lu, "Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films," Semicond. Sci. Technol. 23 (2008) 045004 (6pp).
11. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai and J. H. He, "Antireflection effect of ZnO nanorod arrays," J. Mater. Chem., 2010, 20, 8134–8138.
12. S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, "Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays," applied physics letters 92, 121108 2008.
13. C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, "A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor, " NANO LETTERS Vol. 5, No. 122438-2442 2005.
14. L. Sainiemi, V. Jokinen, A. Shah, M. Shpak, S. Aura, P. Suvanto andS. Franssila, Adv. Mater., 2011, 23, 122–126.
15. J. Zhao and M. A. Green, "Optimized antireflection coatings for high-efficiency silicon solar cells, " IEEE Trans.Electron. Dev. 38(8), 1925–1934 (1991).
16. L. Schirone, G. Sotgiu, and F. P. Califano, “Chemically etched porous silicon as an anti-reflection coating forhigh efficiency solar cells,” Thin Solid Films 297(1-2), 296–298 (1997).
17. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu,Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang,C. S. Lee, K. H. Chen and L. C. Chen, Nat. Nanotechnol., 2007, 2,770–774.
18. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang,Y. Li, H. Li, W. Xu and B. Yang, Adv. Mater., 2009, 21, 4731–4734.
19. Y. M. Song, S. J. Jang, J. S. Yu and Y. T. Lee, Small, "Bioinspired Parabola Subwavelength Structures for Improved Broadband Antireflection, " 2010, 6, 984–987.
20. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie and J. W. P. Hsu, " ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells," Nano Lett., 2008, 8, 1501–1505.
21. Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J. Phys.: Condens. Matter 16 (2004) R829–R858
22. P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” principle,” Nature, vol. 244, pp. 281–282, 1973.
23. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Applied Optics, vol. 32, pp. 1154–1167, 1993.
24. B. S. Thornton, “Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am., vol. 65, pp. 267–270, 1975.
25. S. J. Wilsona; M. C. Hutleya, “The Optical Properties of 'Moth Eye' Antireflection Surfaces,” Journal of Modern Optics, vol. 29, pp.993–1009, 1982.
26. C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Applied Physics Letters, vol. 92, pp. 061112, 2008.
27. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A, vol. 8, pp. 549–553, 1991.
28. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Optics Letters, vol. 24, pp. 1422–1424, 1999.
29. I. Shalish, H.Temkin, and V. Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, PHYSICAL REVIEW B 69, 245401 (2004)
30. Z. Fan, D. Dutta, C. J. Chien, H. Y. Chen, and E. C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, APPLIED PHYSICS LETTERS 89, 213110 2006
31. W. Chen, X. Tao, Y. Liu, X. Sun, Z. Hu, Bin Fei, Applied Surface Science 252 (2006) 8683–8687
32. S. Y. Li, C. Y. Lee, T. Y. Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
33. H. Y. Lu, S. Y. Chu, S. H. Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
34. X. Kong, X. Sun, X. Li, Y. Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
35. S. Kim, M. C. Jeong, B. Y. Oh, W. Lee, J. M. Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
36. W. T. Chiou, W. Y. Wu, J. M. Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
37. D. C. Kim, B. H. Kong, H. K. Cho, D. J. Park and J. Y. Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
38. L. Vayssieres, "Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions," Adv. Mater. 2003, 15, no. 5, March 4.
39. M. K. Lee, C. L. Ho, C. C. Lin, N. R. Cheng, M. H. Houng, Y. K. Chien, and C. F. Yen, "Light Extraction Efficiency Enhancement of GaN Blue LED with ZnO Nanotips Prepared by Aqueous Solution Deposition," J. Electrochem. Soc., vol. 158, Issue 5, pp. D286-D289 (2011).
40. H. Nanto, T. Minami, and S. Takata, Phys. Status Solidi A 65, K131 (1981).
41. H. Morgan and D. E. Brodie, Can. J. PHYS. 60, 1387 (1982).
42. J. Aronovich, A. Ortiz, and R. H. Bube, J. Vac. Sci. Technol. 16, 994 (1979).
43. S. Bethke, H. Pan, and B. W. Wesseis, Appl. Phys. Lett. 52, 138 (1988).
44. U. Wang, X. f. Qian, J. Yin, and Z. k. Zhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
45. Y. Tak and K. Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
46. J. F. Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
47. Scanning Electron Microscope, http://www.purdue.edu/rem/rs/sem.htm
48. W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186~196.
49. Q Ahsanulhaq, A Umar and Y B Hahn1, Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnology 18 (2007) 115603 (7pp).
50. B. D. CULLITY AND S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall, Third Edition 2001, Chap. 5, p. 170.
51. J. B. Lee, M. H. Lee, C. K. Park, J. S. Park*, Effects of lattice mismatches in ZnOysubstrate structures on the orientations of ZnO films and characteristics of SAW devices, Thin Solid Films 447 –448 (2004) 296–301.
52. Y. Yang, H. Yan, Z. Fu, B. Yang, and J. Zuo, Appl. Phys. Lett., 88, 191909 (2006).
53. B. L. Zhu, X. Z. Zhao, S. Xu, F. H. Su, G. H. Li,X. G. Wu, J. Wu, R. Wu, and J. Liu, Japanese Journal of Applied Physics, 47, No. 4, 2225–2229 (2008).
54. U. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149.
55. Y. Tak and K. Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269.
56. J. F.Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162.
57. Q Ahsanulhaq, A Umar and Y B Hahn1, Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnology 18 (2007) 115603 (7pp).
58. H. Y. Lee, Growth of GaAs Oxide Layer Using Photoelectrochemical Method, Journal of The Electrochemical Society, Journal of The Electrochemical Society, 155 (7) G141-G144 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.152.38
論文開放下載的時間是 校外不公開

Your IP address is 18.190.152.38
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code