Responsive image
博碩士論文 etd-0618114-171135 詳細資訊
Title page for etd-0618114-171135
論文名稱
Title
氮化錳鎵稀磁性半導體薄膜及奈米柱之分子束磊晶成長與特性研究
Growth and Characterization of Diluted Magnetic Semiconductors GaMnN Thin Films and Nanorods
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-10
繳交日期
Date of Submission
2014-07-21
關鍵字
Keywords
稀磁性半導體、奈米柱、氮化錳鎵、分子束磊晶
Molecular Beam Epitaxy, GaMnN, Nanorods, Diluted Magnetic Semiconductors
統計
Statistics
本論文已被瀏覽 5720 次,被下載 135
The thesis/dissertation has been browsed 5720 times, has been downloaded 135 times.
中文摘要
本論文主要以電漿輔助分子束磊晶成長氮化錳鎵稀磁性半導體,包括單晶薄膜及一維奈米柱結構,並研究其物理特性。
首先研究以均勻摻雜及脈衝摻雜技術磊晶之氮化錳鎵薄膜。錳原子均勻摻雜高品質單晶氮化鎵薄膜配合低溫氮化鎵緩衝層成長於c面藍寶石基板,錳原子成功取代鎵原子在氮化鎵烏采結構中的位置。在磁阻實驗中,在10 K的環境溫度下得到5.5%的負磁阻,磁阻在升溫至50 K以上後驟降。在超導量子干涉儀(SQUID)變溫磁化率的量測中,估計材料的居禮溫度約為50 K。而脈衝摻雜技術成長之氮化錳鎵薄膜,利用高解析x光繞射(HRXRD)及穿透式電子顯微鏡(TEM),分析材料的單晶結構。並藉由零場冷卻(ZFC)及場冷卻(FC)曲線及異常霍爾效應(AHE),推測材料的居禮溫度約為190-200 K。
再來研究以均勻摻雜及脈衝摻雜技術磊晶之一維氮化錳鎵奈米柱。以均勻摻雜技術成長之氮化錳鎵奈米柱,透過拉曼(Raman)光譜及超導量子干涉儀實驗,錳原子極有可能以間隙缺陷或奈米尺寸的聚積存在於材料中。過多的錳原子會沈積於基板與奈米柱之間形成多晶薄膜。在脈衝摻雜氮化錳鎵奈米柱中,首先研究脈衝摻雜的週期,藉此壓制錳相關次要相的形成以及提高晶體品質,並證明氮化錳鎵奈米柱具有高於室溫鐵磁性。在磁各向異性的量測中,顯示磁矩校正不易沿著氮化鎵c軸。而藉由成長過程中提高錳的流率,得到1.8%錳含量的氮化錳鎵奈米柱,其飽和磁化率幾乎為均勻摻雜奈米柱的四倍。
Abstract
Plasma-assisted molecular beam epitaxy growth and characteristics of GaMnN diluted magnetic semiconductors, including epitaxial thin films and one-dimensional nanorods, are investigated in this dissertation.
Both homogeneously doped and delta-doped techniques are adopted to grow GaMnN thin films. Mn homogeneously doped high crystal quality GaN thin films were grown on c-sapphire with low-temperature GaN buffer layer. Mn atoms successfully substitute the Ga sites in wurtzite structure. GaMnN thin film exhibits 5.5% negative magnetoresistance (MR) at 10 K. The MR drastically drops above 50 K. The temperature dependence magnetization measured by superconducting quantum interference device (SQUID) is about 50 K Curie temperature of GaMnN. Furthermore, the crystallinity of delta-doped GaMnN thin film is verified by high-resolution x-ray diffraction (HRXRD) and transmission electron microscopy (TEM). The zero-field-cool (ZFC) and field-cool (FC) curves and anomalous Hall Effect (AHE) indicate the Curie temperature of the thin film sample is 190-200 K.
The GaMnN nanorods are also grown by PAMBE with homogeneously and delta-doping techniques. The Raman scattering and SQUID measurements indicate the interstitial or nano-sized clusters of Mn may form in homogeneously doped nanorods. Excessive Mn atoms form an amorphous layer between nanorods and substrate. The growth period of delta-doped nanorods is studied for minimizing the formation of Mn related secondary phases and thereby enhancing the crystal quality of the nanorods. Above room temperature ferromagnetism of GaMnN nanorods is observed in the delta-doped nanorods. The anisotropic magnetism of nanorods shows that preferred direction for the magnetic moment alignment is not along the c-axis of GaMnN. The saturated magnetization of delta-doped GaMnN with 1.8% Mn content, obtained by increasing Mn flux during growth, is enhanced almost four times larger than homogeneously doped sample.
目次 Table of Contents
論文審定書 i
Acknowledgement ii
摘要 iv
Abstract v
Contents vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Reviews of GaN based diluted magnetic semiconductors 4
1.3 Organization of the dissertation 10
Chapter 2 Epitaxial Growth and Characterization Techniques 17
2.1 Plasma-assisted molecular beam epitaxy 17
2.2 Electron microscopy 20
2.2.1 Scanning electron microscopy 20
2.2.2 Transmission electron microscopy 23
2.3 Chemical analysis 25
2.3.1 Energy dispersive x-ray spectrometer 25
2.3.2 X-ray photoelectron spectroscopy 26
2.4 X-ray diffraction 28
2.5 Raman spectroscopy 30
2.6 Superconducting quantum interference device 33
Chapter 3 Mn Doped GaN Thin Films Grown by Plasma-assisted Molecular Beam Epitaxy 35
3.1 Homogeneously doped GaMnN thin film 35
3.1.1 Growth procedure and structural properties of thin films 35
3.1.2 Magnetic properties of GaMnN thin film 39
3.2 Delta-doped GaMnN thin films 41
3.2.1 Growth procedure and structural properties of thin films 41
3.2.2 Magnetic properties of GaMnN thin films 46
Chapter 4 Mn Doped GaN Nanorods Grown by Plasma-assisted Molecular Beam Epitaxy 55
4.1 Homogeneously doped GaMnN nanorods 55
4.1.1 Growth procedure and morphology of nanorods 55
4.1.2 Analysis of Mn component of nanorods 58
4.1.3 Structural properties of nanorods 61
4.1.4 Magnetic properties of nanorods 64
4.2 Delta-doped GaMnN naorods with varied growth period of GaN in a pair 65
4.2.1 Growth procedure and morphology of nanorods 65
4.2.2 Structural properties of nanorods 67
4.2.3 Optical properties of nanorods 73
4.2.4 Magnetic properties of nanorods 77
4.3 Delta-doped GaMnN nanorods with varied Mn flux 79
4.3.1 Growth procedure and morphology of nanorods 79
4.3.2 Structural properties of nanorods 81
4.3.3 Magnetic properties of nanorods 83
Chapter 5 Conclusion 89
參考文獻 References
Chapter 1
[1] D. D. Awschalom, D. Loss, and N. Samarth : “Semiconductor Spintronics and Quantum Computation”, Publisher: Springer (2002). ISBN:3-540-42176-9, in Preface, p. 1.
[2] 夏建白, 葛惟昆, 常凯: 半導體自旋電子學. (科學出版社, 2008), p. 1
[3] M. N. Baibich, J. M. Broto, A. Fert, F. N. VanDau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters 61, 2472 (1988).
[4] D. C. Ralph, and M. D. Stiles, “Spin transfer torques”, Journal of Magnetism and Magnetic Materials 320, 1190 (2008).
[5] S. S. P. Parkin, M. Hayashi, and L Thomas, “Magnetic Domain-Wall Racetrack Memory”, Science 320, 190 (2008).
[6] T. Kasuya, and A. Yanase, “Anomalous Transport Phenomena in Eu-Chalcogenide Alloys”, Reviews of Modern Physics 40, 684 (1968).
[7] V. Avrutin, N. Izyumskaya, U. Ozgur, D. J. Silversmith, and H. Morkoc, “Ferromagnetism in ZnO- and GaN-Based Diluted Magnetic Semiconductors: Achievements and Challenges”, Proceeding of the IEEE 98, 1288 (2010).
[8] M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, “Anisotropic Ferromagnetism in Substituted Zinc Oxide”, Physical Review Letters 93, 177206 (2004).
[9] J. S. Lee, J. D. Lim, Z. G. Khim, Y. D. Park, S. J. Pearton, and S. N. G. Chu, “Magnetic and Structural Properties of Co, Cr, V Ion-Implanted GaN”, Journal of Applied Physics 93, 4512 (2003).
[10] S. Kimura, S. Emura, Y. Yamauchi, Y. K. Zhou, S. Hasegawa, and H. Asahi, “Low Temperature Molecular Beam Epitaxy Growth of Cubic GaCrN”, Journal of Crystal Growth 310, 40 (2008).
[11] M. Strassburg, M. H. Kane, A. Asghar, Q. Song, Z. J. Zhang, J. Senawiratne, M. Alevli, N. Dietz, C. J. Summers, and I. T. Ferguson, “The Fermi Level Dependence of the Optical and Magnetic Properties of Ga1-xMnxN Grown by Metal-Organic Chemical Vapor Deposition”, Journal of Physics: Condensed Matter 18, 2615 (2006).
[12] G. Talut, H. Reuther, S. Zhou, K. Potzger, F. Eichhorn, and F. Stromberg, “Ferromagnetism in GaN Induced by Fe Ion Implantation”, Journal of Applied Physics 102, 083909 (2007).
[13] W. Kim, H. J. Kang, S. K. Oh, S. Shin, J. H. Lee, J. Song, S. K. Noh, S. J. Oh, and C. S. Kim, “Magnetic and Structural Properties of Co Ion-Implanted GaN”, IEEE Transactions on Nanotechnology 5, 149 (2006).
[14] R. T. Huang, C. F. Hsu, J. J. Kai, F. R. Chen, and T. S. Chin, “Room-Temperature Diluted Magnetic Semiconductors p-(Ga,Ni)N”, Applied Physics Letters 87, 202507 (2005).
[15] D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, and G. D. Tang, “Magnetic Properties of n-type Cu-Doped ZnO Thin Films”, Applied Physics Letters 90, 142502 (2007).
[16] S. Dhar, O. Brandt, M. Ramsteiner, V. E. Sapega, and K. H. Ploog, “Colossal Magnetic Moment of Gd in GaN”, Physical Review Letters 94, 037205 (2005).
[17] H. Asahi, Y. K. Zhou, M. Hashimoto, M. S. Kim, X. J. Li, S. Emura, and S. Hasegawa, “GaN-Based Magnetic Semiconductors for Nanospintronics”, Journal of Physics: Condensed Matter 16, 5555 (2004).
[18] 胡裕民, 物理雙月刊, 二十六卷四期, (2004).
[19] J. K. Furdyna, “Diluted Magnetic Semiconductors”, Journal of Applied Physics 64, 29 (1988).
[20] D. Ferrand, J. Cibert, C. Bourgognon, S. Tatarenko, A. Wasiela, G. Fishman, A. Bonanni, H. Sitter, S. Kolesnik, J. Jaroszynski, A. Barcz, and T. Dietl, “Carrier-Induced Ferromagnetic Interactions in p-Doped Zn(1-x)MnxTe Epilayers”, Journal of Crystal Growth 214, 387 (2000).
[21] L. Hansen, D. Ferrand, G. Richter, M. Thierley, V. Hock, N. Schwarz, G. Reuscher, G. Schmidt, L. W. Molenkamp, and A. Waag, “Epitaxy and Magnetotransport Properties of the Diluted Magnetic Semiconductor p-Be(1-x)MnxTe”, Applied Physics Letters 79, 3125 (2001).
[22] H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. Chang, and L. Esaki, “Diluted Magnetic III-V Semiconductors”, Physical Review Letters 63, 1849 (1989).
[23] H. Munekata, H. Ohno, S. von Molnar, A. Harwit, A. Segmuller, and L. L. Chang, “Epitaxy of III–V Diluted Magnetic Semiconductor Materials”, Journal of Vacuum Science and Technology B 8, 176 (1990).
[24] H. Ohno, H. Munekata, T. Penney, S. V. Molnar, and L. L. Chang, “Magnetotransport Properties of p-Type (In,Mn)As Diluted Magnetic III-V Semiconductors”, Physical Review Letters 68, 2664 (1992).
[25] H. Ohno, F. Matsukura, A. Shen, Y. Sugawara, N. Akiba, and T. Kuroiwa, “Ferromagnetic (Ga,Mn)As and its heterostructures”, Physica E 2, 904 (1998).
[26] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, “Transport properties and origin of ferromagnetism in (Ga,Mn)As”, Physical Review B 57, R2037 (1998).
[27] S. Ohya, K. Ohno, and M. Tanaka, “Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs”, Applied Physics Letters 90, 112503 (2007).
[28] L. Chen, S. Yan, P. F. Xu, J. Lu, W. Z. Wang, J. J. Deng, X. Qian, Y. Ji, and J. H. Zhao, “Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature”, Applied Physics Letters 95, 182505 (2009).
[29] M. E. Overberg, B. P. Gila, C. R. Abemathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy, S. B. Arnason, and A. F. Hebard, “Magnetic properties of p-type GaMnP grown by molecular-beam epitaxy”, Applied Physics Letters 79, 3128 (2001).
[30] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors”, Science 287, 1019 (2000).
[31] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts, and S. M. Bedair, “Room Temperature Ferromagnetic Properties of (Ga, Mn)N”, Applied Physics Letters 79, 3473 (2001).
[32] S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, and H. Hori, “Molecular Beam Epitaxy of Wurtzite (Ga,Mn)N Films on Sapphire(0001) Showing the Ferromagnetic Behaviour at Room Temperature”, Journal of Crystal Growth 237, 1358 (2002).
[33] K. H. Ploog, S. Dhar, and A. Trampert, “Structural and Magnetic Properties of (Ga,Mn)N Layers Grown on SiC by Reactive Molecular Beam Epitaxy”, Journal of Vacuum Science and Technology B 21, 1756 (2003).
[34] M. Zajac, J. Gosk, E. Grzanka, M. Kaminska, A. Twardowski, B. Strojek, T. Szyszko, and S. Podsiadlo, “Possible Origin of Ferromagnetism in (Ga,Mn)N”, Journal of Applied Physics 93, 4715 (2003).
[35] S. Kuroda, E. Bellet-Amalric, X. Biquard, J. Cibert, R. Giraud, S. Marcet, and H. Mariette, “Optimization of the Growth of Ga1-xMnxN Epilayers Using Plasma-Assisted MBE”, Physica Status Solidi B 240, 443 (2003).
[36] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, “Magnetic and Structural Properties of Mn-Implanted GaN”, Applied Physics Letters 78, 3475 (2001).
[37] M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Masry, “Room Temperature Magnetic (Ga, Mn)N: a New Material for Spin Electronic Devices”, Materials Letters 51, 500 (2001).
[38] L. S. Dorneles, D. O’Mahony, C. B. Fitzgerald, F. McGee, M. Venkatesan, I. Stanca, J. G. Lunney, and J. M. D. Coey, “Structural and Compositional Analysis of Transition-Metal-Doped ZnO and GaN PLD Thin Films”, Applied Surface Science 248, 406 (2005).
[39] S. Sonoda, I. Tanaka, H. Ikeno, T. Yamamoto, F. Oba, T. Araki, Y. Yamamoto, K. Suga, Y. Nanishi, Y. Akasaka, K. Kindo and H. Hori, “Coexistence of Mn2+ and Mn3+ in Ferromagnetic GaMnN”, Journal of Physics: Condensed Matter 18, 4615 (2006).
[40] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical Properties of the Deep Mn Acceptor in GaN:Mn”, Applied Physics Letters 80, 1731 (2002).
[41] S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog, “Colossal Magnetic Moment of Gd in GaN”, Physical Review Letter 94, 037205 (2005).
[42] M. Roever, J. Malindretos, A. Bedoya-Pinto, and A. Rizzi, “Tracking defect-induced ferromagnetism in GaN:Gd”, Physical Review B 84, 081201 (2011).
[43] F. Y. Lo, J. Y. Guo, C. D. Huang, K. C. Chou, H. L. Liu, V. Ney, A. Ney, M. Y. Chern, S. Shrarkov, D. Reuter, A. D. Wieck, S. Pezzagna, and J. Massies, “Evidences of defect contribution in magnetically ordered Sm-implanted GaN”, Current Applied Physics 14, S7 (2014).
[44] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, “Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure”, Nature 402, 790 (1999).
[45] M. H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner, and J. M. Myoung, “Electrical Spin Injection from Room-Temperature Ferromagnetic (Ga, Mn)N in Nitride-Based Spin-Polarized Light-Emitting Diodes”, Journal of Physics: Condensed Matter 19, 7703 (2006).
Chapter 2
[1] M. A. Herman, H. Sitter : “Molecular Beam Epitaxy Fundamentals and Current Status”, ISBN 3-540-60594-0, Chapter1.1, p.2–13, Publisher: Springer (2002).
[2] P Frigeri, L Seravalli, G Trevisi, and S Franchi, “Molecular Beam Epitaxy: An Overview”, Comprehensive Semiconductor Science and Technology 3, 480 (2011).
[3] R. A. Serway, C. J. Moses, and C. A. Moyer: “Modern Physics”, ISBN 0-7176-7550-6, p.154, Publisher: Cengage Learning (2004).
[4] http://www.substech.com/dokuwiki/doku.php?id=scanning_electron_microscope
[5] http://www4.nau.edu/microanalysis/microprobe/Interact-Effects.html
[6] http://www.texample.net/tikz/examples/transmission-electron-microscope/
[7] http://3dsciencepics.com/latest-transmission-electron-microscope-diagram/
[8] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, Jr., C. E. Lyman, C. Fiori, and E. Lifshin, “Scanning Electron Microscopy and X-ray Microanalysis”, ISBN:0-306-44175-6, p.120, Publisher: Plenum Press (1992).
[9] http://en.wikipedia.org/wiki/File:XPS_PHYSICS.png
[10] J. C. Vickerman, I. S. Gilmore, B. D. Ratner, and D. G. Castner, “Surface Analysis”, ISBN 9780470017630, Chapter 3, p.47–58, Publisher: Wiley (2009).
[11] 張立信, “表面化學分析技術”, 奈米通訊19卷No.4, p.17-23
[12] http://www.microscopy.ethz.ch/bragg.htm
[13] J. R. Ferraro, K. Nakamoto, and C. W. Brown, “Introductory Raman Spectroscopy”, ISBN 978-0-12-254105-6, Chapter1, p.1-17. Publisher: Academic Press (2003).
[14] T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, “Raman scattering from LO phonon-plasmon coupled modes in gallium nitride”, J. Appl. Phys. 75, 1098 (1994).
Chapter 3
[1] J. N. Kuznia, M. A. Khan, D. T. Olson, R. Kaplan, and J. Freitas, “Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates”, Journal of Applied Physics 73, 4700 (1993).
[2] Y. Cui, V. K. Lazorov, M. M. Goetz, H. Liu, D. P. Robertson, M. Gajdardziska-Josifovska, and L. Li, “Cubic GaN formation in Mn/GaN multilayer films grown on 6H-SiC(0001)”, Applied Physics Letters 82, 4666 (2003).
[3] H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors”, Journal of Physics: Condensed Matter 16, 5653 (2004).
[4] M. Asghar, I. Hussain, E. Bustarret, J. Cibert, S. Kuroda, S. Marcet, and H. Mariette, “Study of lattice properties of Ga1-xMnxN epilayers grown by plasma-assisted molecular beam epitaxy by means of optical techniques”, Journal of Crystal Growth 296, 174 (2006).
[5] X. Q. Xiu, R. Zhang, B. B. Li, Z. L. Xie, L. Chen, B. Liu, P. Han, S. L. Gu, Y. Shi, and Y. D. Zheng, “Study of structures and magnetic properties of single crystalline HVPE-GaMnN films”, Journal of Crystal Growth 292, 212 (2006).
[6] X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD”, Solid State Communications 143, 236 (2007).
[7] K. Sardar, A. R. Raju, B. Bansal, V. Venkataraman, C. N. R. Rao, “Magnetic, optical and transport properties of GaMnN films”, Solid State Communications 125, 55 (2003).
[8] M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived N-type GaMnN”, Applied Physics Letters 79, 1312 (2001)
[9] M. H. Ham, D. K. Oh, J. M. Myoung, “Transport Properties in (Ga,Mn)N Nanowire Field-Effect Transistors”, Journal of Physical Chemistry C 111, 11480 (2007).
[10] M. C. Park, K. S. Huh, J. M. Myoung, J. M. Lee, J. Y. Chang, K. I. Lee, S. H. Han, and W. Y. Lee, “Room temperature ferromagnetic (Ga,Mn)N epitaxial films with low Mn concentration grown by plasma-enhanced molecular beam epitaxy”, Solid State Communications 124, 11 (2002).
[11] R. M. Bozorth, “Ferromagnetism”, IEEE Press, New York, 1951, p. 431.
[12] R. G. Pearson, “Absolute Electronegativity and Hardness: Application to Inorganic Chemistry”, Inorganic Chemistry 27, 734 (1988).
[13] A. Costales, M. A. Blanco, A. M. Pendas, A. K. Kandalam, and R. Pandey, “Chemical Bonding in Group III Nitrides”, Journal of the American Chemical Society 124, 4116 (2002).
[14] E. F. Schubert, J. M. Kuo, R. F. Kopf, H. S. Luftman, L. C. Hopkins, and N. J. Sauer, “Beryllium doping of GaAs grown by molecular beam epitaxy”, Journal of Applied Physics 67, 1969 (1990).
[15] H. C. Jeon, T. W. Kang, T. W. Kim, J. Kang, and K. J. Chang, “Enhancement of the magnetic properties in (Ga1-xMnx)N thin films due to Mn-delta doping”, Applied Physics Letters 87, 092501 (2005).
[16] R. Held, D. E. Crawford, A. M. Johnston, A. M. Dabiran, and P. I. Cohen, “In Situ Control of GaN Grown by Molecular Beam Epitaxy”, Journal of Electronic Materials 26, 272 (1997).
[17] K. H. Kim, K. J. Lee, J. B. Park, D. J. Kim, H. Kim, and Y. E. Ihm, C. S. Kim, H. C. Lee, C. G. Kim, S. H. Yoo, D. Djayaprawira, and M. Takahashi, “GaMnN Thin Films Grown on Sapphire and GaAs Substrates Using Single GaN Precursor Via Molecular Beam Epitaxy”, Journal of the Korean Physical Society 42, S399 (2003).
[18] K. Suzuki, T. Kaneko, H. Yoshida, Y. Obi, H. Fujimori, and H. Morita, “Crystal structure and magnetic properties of the compound MnN”, Journal of Alloys and Compounds 306, 66 (2000).
[19] B. Fultz, and J. M. Howe, “Transmission Electron Microscopy and Diffractometry of Materials”, ISSN: 1439-2674, Chapter 6.4.2, p. 303, Publisher: Springer (2008).
[20] S. O. Hwang, H. S. Kim, S. H. Park, J. Park, S. Y. Bae, B. Kim, J. Y. Park, and G. Lee, “Selective Growth of Straight and Zigzagged Ga1-xMnxN (0≦x≦0.05) Nanowires and Dependence of Their Electronic Structure and Magnetization on the Mn Content”, Journal of Physical Chemistry C 112, 2934 (2008).
[21] G. T. Thaler, R. M. Frazier, J. Stapleton, C. R. Abernathy, S. J. Pearton, J. Kelly, R. Rairigh, A. F. Hebard, and J. M. Zavada, “Properties of (Ga,Mn)N With and Without Detectable Second Phases”, Electrochemical and Solid-State Letters 7, G34 (2004).
[22] M. Marques, L. K. Teles, L. M. R. Scolfaro, J. Furthmuller, F. Bechstedt, and L. G. Ferreira, “Magnetic properties of MnN: Influence of strain and crystal structure”, Applied Physics Letters 86, 164105 (2005).
[23] A. Ney, “Magnetic properties of semiconductors and substrates beyond diamagnetism studied by superconducting quantum interference device magnetometry”, Semiconductor Science and Technology 26, 064010 (2011).
[24] Z. Yang, W. P. Beyermann, M. B. Katz, O. K. Ezekoye, Z. Zuo, Y. Pu, J. Shi, X. Q. Pan, and J. L. Liu, “Microstructure and transport properties of ZnO:Mn diluted magnetic semiconductor thin films”, Journal of Applied Physics 105, 053708 (2009).
[25] B. A. Aronzon, M. A. Pankov, V. V. Rylkov, E. Z. Meilikhov, A. S. Lagutin, E. M. Pashaev, M. A. Chuev, V. V. Kvardakov, I. A. Likhachev, O. V. Vihrova, A. V. Lashkul, E. Lahderanta, A. S. Vedeneev, and P. Kervalishvili, “Ferromagnetism of low-dimensional Mn-doped III-V semiconductor structures in the vicinity of the insulator-metal transition”, Journal of Applied Physics 107, 023905 (2010).
Chapter 4
[1] H. Y. Chen, H. W. Lin, C. H. Shen, and S. Gwo, “Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy”, Applied Physics Letters 89, 243105 (2006).
[2] M. Wolz, J. Lahnemann, O. Brandt, V. M. Kaganer, M. Ramsteiner, C. Pfuller, C. Hauswald, C. N. Huang, L. Geelhaar, and H. Riechert, “Correlation between In content and emission wavelength of InxGa1-xN/GaN nanowire heterostructures”, Nanotechnology 23, 455203 (2012).
[3] S. Kuroda, E. Bellet-Amalric, X. Biquard, J. Cibert, R. Giraud, S. Marcet, and H. Mariette, “Optimization of the growth of Ga1-xMnxN epilayers using plasma-assisted MBE”, Physica Status Solidi (b) 240, 443 (2003).
[4] Z. Wang, B. Huang, L. Yu, Y. Dai, P. Wang, X. Qin, X. Zhang, J. Wei, J. Zhan, X. Jing, H. Liu, and M. H. Whangbo, “Enhanced Ferromagnetism and Tunable Saturation Magnetization of Mn/C-Codoped GaN Nanostructures Synthesized by Carbothermal Nitridation”, Journal of American Chemical Society 130, 16366 (2008).
[5] http://www.phy.cuhk.edu.hk/course/surfacesci/mod3/m3_s4.pdf
[6] http://www.uksaf.org/data/sfactors.html
[7] Z. H. Sun, X. Y. Song, F. X. Yin, L. X. Sun, X. K. Yuan, and X. M. Liu, “Giant negative thermal expansion in ultrafine-grained Mn3(Cu1-xGex)N (x=0.5) bulk”, Journal of Physics D: Applied Physics 42, 122004 (2009).
[8] Y. Liu, L. Xu, X. Li, P. Hu, and S. Li, “Growth and magnetic property of ζ-phase Mn2N_(1±x) thin films by plasma-assisted molecular beam epitaxy”, Journal of Applied Physics 107, 103914 (2010).
[9] K. H. Kim, K. J. Lee, J. B. Park, D. J. Kim, H. Kim, Y. E. Ihm, C. S. Kim, H. C. Lee, C. G. Kim, S. H. Yoo, D. Djayaprawira, and M. Takahashi, “GaMnN thin films grown on sapphire and GaAs substrates using single GaN precursor via molecular beam epitaxy”, Journal of the Korean Physical Society 42, S399 (2003).
[10] M. C. Morris, H. F. McMurdie, E. H. Evans, B. Paretzkin, H. S. Parker, N. C. Panagiotopoulos, and C. R. Hubbard, “Standard X-ray Diffraction Powder Patterns”, National Bureau of Standards Monograph 25 section 18, p.43 (1981).
[11] V. Sliwko, P. Mohn, and K. Schwarz, “The electronic and magnetic structures of alpha- and beta- manganese”, Journal of Physics: Condensed Matter 6, 6557 (1994).
[12] I. T. Yoon, T. W. Kang, and D. J. Kim, “Magnetic behavior of Mn3GaN precipitates in ferromagnetic Ga1-xMnxN layers”, Materials Science and Engineering B 134, 49 (2006).
[13] B. Song, J. Jian, H. Bao, M. Lei, H. Li, G. Wang, Y. Xu, and X. Chen, “Observation of spin-glass behavior in antiperovskite Mn3GaN”, Applied Physics Letters 92, 192511 (2008).
[14] W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, and B. Rauschenbach, “Raman scattering in ion-implanted GaN”, Applied Physics Letters 72, 2589 (1998).
[15] W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiadlo, “Raman scattering study of Ga1-xMnxN crystals”, Applied Physics Letters 76, 3870 (2000).
[16] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Applied Physics Letters 80, 1731 (2002).
[17] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides”, Applied Physics Letters 81, 5159 (2002).
[18] S. S. A. Seo, M. K. Kim, Y. S. Lee, T. W. Noh, Y. D. Park, G. T. Thaler, M. E. Overberg, C. R. Abernathy, and S. J. Pearton, “Observation of sphere resonance peak in ferromagnetic GaN:Mn”, Applied Physics Letters 82, 4749 (2003).
[19] N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Applied Physics Letters 91, 242502 (2007).
[20] P. E. Champness, “Electron Diffraction in the Transmission Electron Microscope”, ISBN 1-85996-147-9, Chapter 7.2, p. 119, Publish: BIOS (2001).
[21] E. Choi, J. Kang, and K. J. Chang, “Energetics of cubic and hexagonal phases in Mn-doped GaN: First-principles pseudopotential calculations”, Physical Review B 74, 245218 (2006).
[22] A. Urban, J. Malindretos, M. Seibt, and A. Rizzi, “Structure and Elemental Distribution of (Ga,Mn)N Nanowires”, Nano Letters 11, 398 (2011).
[23] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, and F. Ren, “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy”, Journal of Applied Physics 92, 4989 (2002).
[24] H. J. Choi, H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall, and P. Yang, “Single-Crystalline Diluted Magnetic Semiconductor GaN:Mn Nanowires”, Advanced Materials 17, 1351 (2005).
[25] Q. Wang, Q. Sun, and P. Jena, “Ferromagnetism in Mn-doped GaN nanowires”, Physical Review Letters 95, 167202 (2005).
[26] C. L. Hsiao, L. W. Tu, T. W. Chi, M. Chen, T. F. Young, C. T. Chia, and Y. M. Chang, “Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy”, Applied Physics Letters 90, 043102 (2007).
[27] A. G. Milekhin, R. J. Meijers, T. Richter, R. Calarco, H. Luth, B. A. P. Sierra, and D. R. T. Zahn, “Surface enhanced Raman scattering by GaN naocolumns”, Physica Status Solidi (c) 3, 2065 (2006).
[28] H. C. Jeon, T. W. Kang, T. W. Kim, J. Kang, and K. J. Chang, “Enhancement of the magnetic properties in (Ga1-xMnx)N thin films due to Mn-delta doping”, Applied Physics Letters 87, 092501 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code