Responsive image
博碩士論文 etd-0618116-103841 詳細資訊
Title page for etd-0618116-103841
論文名稱
Title
氧電漿生成之界面層對具氮化鈦/二氧化鉿閘極結構之P型多晶矽薄膜電晶體影響之研究
Impacts of Oxygen Plasma Induced Interfacial Layer on P-type Poly-Si Thin-Film Transistors With TiN/HfO2 Gate Stack
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-15
繳交日期
Date of Submission
2016-07-20
關鍵字
Keywords
高介電常數材料、可靠度分析、多晶矽薄膜電晶體、固定氧化層電荷、二氧化鉿
polycrystalline silicon thin film transistors, fix oxide charge, Hafnia oxide, reliability, high dielectric constant material
統計
Statistics
本論文已被瀏覽 5659 次,被下載 612
The thesis/dissertation has been browsed 5659 times, has been downloaded 612 times.
中文摘要
隨著積體電路的發展,電晶體單位尺寸一直在微縮,為了保持電晶體良好的電性行為,微縮工程面臨了許多挑戰,如閘極控制能力降低、次臨界擺幅的上升。而高介電常數材料代替傳統閘極氧化層的方式,能有效提升電晶體性能。
本篇論文以高介電常數材料二氧化鉿做為P型多晶矽薄膜電晶體的介電層,並探討氧電漿處理表面的電性行為和可靠度分析。
首先討論常溫下的電性行為,P型多晶矽薄膜電晶體通道表面的懸浮鍵會被氧電漿鈍化,使電晶體有較低的次臨界擺幅。氧電漿處理會在通道表面形成電漿界面層,而電漿界面層含有負的固定氧化層電荷,會有較低的臨界電壓。經過氧電漿處理的P型多晶矽薄膜電晶體,通道表面的應力鍵會增加,導致轉移電導的下降。探討在不同通道長度下,P型薄膜電晶體的次臨界擺幅、臨界電壓、載子遷移率及導通電流。
為了研究可靠度的影響,實驗分為負偏壓應力、負偏壓溫度不穩定性及溫度效應。負偏壓應力狀況下,傳統P型多晶矽薄膜電晶體的次臨界擺幅有嚴重的劣化,是由於在通道表面產生懸浮鍵,且臨界電壓受到次臨界擺幅的影響而劣化。氧電漿處理的通道獲得改善,通道表面產生較少的懸浮鍵和應力鍵,有電洞注入發生,閘極氧化層產生正的固定氧化層電荷,造成臨界電壓的劣化。負偏壓溫度不穩定性,當提高溫度後會造成更嚴重的劣化程度。最後探討溫度效應,比較三種溫度對薄膜電晶體劣化的影響。
Abstract
With the development of integrated circuits, the transistors dimension has been scaling. In order to maintain the electrical behavior of transistors, miniature engineering faced many challenges. For example, reduced of gate control ability and increased of subthreshold swing. There are many ways to keep the transistors performance. One of the option is using high dielectric constant material instead of the traditional gate oxide layer.
In the thesis, LTPS-TFTs are fabricated with Hafnia oxide gate dielectric and the impact of oxygen plasma induced interfacial layer on electrical behavior of P-type Poly-Si thin film transistors were investigated. First discuss the electrical behavior at room temperature. The transistors with oxygen plasma have less dangling bonds and more strain bonds, leading to smaller subthreshold swing and lower transconductance. The oxygen plasma will grow plasma-induced interfacial layer, it contains negative fix oxide charges, resulting in smaller threshold voltage.
To study the effect of reliability, it was divided into negative bias stress, negative bias temperature instability and temperature effects. In the experiment, the traditional transistors have serious degradation in subthreshold swing. Since the dangling bonds generated on the surface of channel. The transistors with oxygen plasma occurred hole injection in HfO2, producing positive fix oxide charges.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 薄膜電晶體運作原理 2
1.3 晶粒邊界(Grain Boundary)的介紹 2
1.4 短通道效應(Short Channel Effect,SCE) 3
1.5 高介電常數材料 3
1.6 陷阱能態的鈍化 4
1.7 研究動機 5
第二章 實驗參數與元件製作 10
2.1 實驗參數的萃取 10
2.1.1 臨界電壓 10
2.1.2 次臨界擺幅 10
2.1.3 轉移電導 11
2.1.4 電流開啟狀態 11
2.1.5 界面能態密度 11
2.1.6 晶粒邊界陷阱密度 11
2.2 元件的製作 11
第三章 結果與討論 19
3.1 氧電漿處理對P型薄膜電晶體之電性分析 19
3.2 氧電漿處理對P型薄膜電晶體之可靠度分析 20
3.2.1 氧電漿處理對P型薄膜電晶體之NBS分析 20
3.2.2 氧電漿處理對P型薄膜電晶體之NBTI分析 21
3.3.3氧電漿處理對P型薄膜電晶體之溫度效應 22
第四章 結論 38
參考文獻 39
參考文獻 References
[1] S. M. Sze, “Semiconductor Devices Physics and Technology,” 2nd ed. John Wiley, 2002.
[2] A. Allan, D. Edenfeld, W. H. Joyner, A. B. Kahng, M. Rodgers, Y. Zorian, “2003 technology roadmap for semiconductors,” Computer, pp. 47-56, 2004.
[3] A. I. Kingon, J. P. Maria, and S. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, pp. 1032-1038, 2000.
[4] D. A. Neamen, “Semiconductor physics and devices : basic principles,” Fourth ed. McGraw-Hill Companies, Inc, 2012.
[5] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, “Passivation Kinetics of Two Types of Defects in Polysilicon TFT by Plasma Hydrogenation,” IEEE Electron Device Letters, vol. 12, no. 4, pp. 181-183, 1991.
[6] Y. Taur, T. H. Ning, “Fundamentals of modern VLSI devices,” Cambridge University Press, 2013.
[7] W. C. Y. Ma, T. Y. Chiang, C. R. Yeh, T. S. Chao and T. F. Lei, “Channel Film Thickness Effect of Low-Temperature Polycrystalline-Silicon Thin-Film Transistors, ” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1268-1272, 2011.
[8] W. C. Y. Ma, T. Y. Chiang, J. W. Lin, T. S. Chao, “Oxide Thinning and Structure Scaling Down Effect of Low-Temperature Poly-Si Thin-Film Transistors,” Journal of Display Technology., vol. 8, no. 1, pp. 12-17, 2012.
[9] C. W. Chang, C. K. Deng, J. J. Huang, H. R. Chang, T. F. Lei, “High-Performance Poly-Si TFTs With Pr2O3 Gate Dielectric,” IEEE Electron Device Letters, vol. 29, no. 1, pp. 96-98, 2008.
[10] C. P. Lin, B. Y. Tsui, M. J. Yang, R. H. Haung, C. H. Chien, “ High-Performance Poly-Silicon TFTs using HfO2 Gate Dielectric,” IEEE Electron Device Letters, vol. 27, no. 5, pp. 360-363, 2006.
[11] T. M. Pan, C. L. Chan, and T. W. Wu, “High-Performance Poly-Silicon TFTs Using a High- PrTiO3 Gate Dielectric,” IEEE Electron Device Letters, vol. 30, no. 1, pp. 39-41, 2009.
[12] B. F. Hung, K. C. Chiang, C. C. Haung, A.Chin, S.P.McAlister, “High-Performance Poly-Silicon TFTs Incorporating LaAlO3 as the Gate Dielectric,” IEEE Electron Device Letters, vol. 26, no. 6, pp. 384-386, 2005.
[13] M. Houssa, L.Pantisano, L.A. Ragnarsson, R. Degraeve, T. Scharm, G. Pourto, S. Degendt, G. Groeseneken, M. M. Heyns, “Electrical Properties of High-k Gate Dielectrics: Challenges, Current Issues, and Possible Solutions,” Material Science and Enginerring :R :Reports., vol. 51, no. 4, pp. 37-85, 2006.
[14] M. J. Tsai, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, H. C. Cheng, “Characterization of H2/N2 Plasma Passivation Process for Poly-Si Thin Film Transistors (TFTs) ,” Solid State Electronics., vol. 38, no. 6, pp. 1233-1238, 1995.
[15] H. C. Cheng, F. S. Wang, C. Y. Huang, “Effects of NH3 Plasma Passivation on N-channel Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 64–68, 1997.
[16] F. S. Wang, M. J. Tsai, H. C. Cheng, “The Effects of NH3 Plasma Passivation on Polysilicon Thin-Film Transistors,” IEEE Electron Device Letters., vol. 16, no .11 pp. 503-505, 1995.
[17] M. W. Ma, T. Y. Chiang, W. C. Wu, T. S. Chao, T. F. Lei, “Characteristics of Poly-Si Interfacial Layer on CMOS LTPS-TFTs With Gate Dielectric and O2 Plasma Surface Treatment,” IEEE Trans. Electron Devices, vol. 55, no. 12, pp. 3489-3493, 2008.
[18] H. Kawaguchi, H. Abiko, K. Inoue, Y. Saito, T. Yamada, Y. Hayashi, S. Masuoka, A. Ono, T. Tamura, K. Tokunaga, Y. Yamada, K. Yoshida, I. Sakai, “A Robust 0.15m CMOS Technology with CoSi2 Salicide and Shallow Trench Isolation,” Symposium on VLSI Technology., pp. 125-126. 1997.
[19] H. S. Wong, “Beyond the conventional transistor,” IBM Journal of Research and Development., vol. 46, no. 2. 3, pp. 133-168, 2002.
[20] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity Behavior in Polycrystalline Semiconductor Thin Film Transistors,” J. Appl. Phys., vol. 53, pp. 1193–1202, 1982.
[21] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and Electrical Properties of Undoped Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915–1922, 1989.
[22] M. W. Ma, C. Y. Chen, W.C. Wu, C. J. Su, K. H. Kao, T. S. Chao, T. F. Lei, “Reliability Mechanisms of LTPS-TFT With Gate Dielectric: PBTI, NBTI, and Hot-Carrier Stress,” IEEE Trans. Electron Devices, vol. 55 no. 5, pp. 1153-1160, 2008.
[23] C. Y. Chen, J. W. Lee, S. D. Wang, M. S. Shieh, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, T. F. Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 53, no.12, pp. 2993-3000. 2006.
[24] M. J. Yang, C. H. Chien, Y. H. Lu, C. Y. Shen, T. Y. Huang, “ Electrical Properties of Low-Temperature-Compatible P-Channel Polycrystalline-Silicon TFTs Using High-Gate Dielectrics,” IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 1027-1034, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code