Responsive image
博碩士論文 etd-0618116-151100 詳細資訊
Title page for etd-0618116-151100
論文名稱
Title
利用氧化亞銅與N型矽基板製作太陽能電池
Fabrication of Solar Cells using Cuprous Oxide on N-type Bulk Silicon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-13
繳交日期
Date of Submission
2016-07-21
關鍵字
Keywords
氧化亞銅、金字塔結構、熱氧法、超臨界流體、異質接面太陽能電池
Supercritical Fluid, Thermal Oxidation, Cuprous Oxide, Texture, Heterojunction Solar Cells
統計
Statistics
本論文已被瀏覽 5660 次,被下載 247
The thesis/dissertation has been browsed 5660 times, has been downloaded 247 times.
中文摘要
本研究中利用P型氧化亞銅與N型矽晶圓製作異質接面太陽能電池,首先利用氫氧化鉀鹼性水溶液對單晶矽的非等向性蝕刻特性,在矽晶圓表面製作金字塔結構以降低表面光反射;同時利用熱氧法氧化矽晶圓表面再以濕蝕刻移除表面氧化膜,這樣做的目的有二,首先是可以降低金字塔結構的銳利度,其次則在於清除製程中矽晶圓表面所吸附的雜質。接下來使用超臨界流體製程對矽晶圓作表面鈍化,以修補矽晶圓表面由於斷鍵所形成的缺陷。最後利用溶液製成與反應式濺鍍兩種方式沉積氧化亞銅薄膜,並以熱蒸鍍的方式沉積銀電極完成元件。 矽晶圓經非等向性蝕刻後表面的金字塔結構能將基板反射率從29.6%降至15.3%,同時由SEM證實熱氧法與氧化層蝕刻也能有效降低結構銳利度,但也會造成反射率上升,成長0.5μm二氧化矽的矽晶圓經蝕刻後的基板反射率增加為17.7%。最後以反應式濺鍍沉積氧化亞銅薄膜的太陽能電池元件有最好的元件表現,其開路電壓為0.3V、短路電流密度為1.03mA/cm2、填充因子(Full Factor, FF)為0.37、元件效率為0.11%。在表面鈍化部分,矽晶圓晶經超臨界流體處理1小時候的載子生命週期為94.1μs,未來想提升元件表現需先克服載子生命週期太短的問題。
Abstract
In this study, we fabricate heteorjunction solar cells which are composed of P-type cuprous oxide on N-type silicon wafer. First, the silicon wafer was textured with KOH alkaline solution to lower the weighted reflection. In the following, we used thermal oxidation to grow silicon oxide on the surface of silicon wafer, and removed the grown oxide with wet etching. There are two reasons to do so. One is to lower the sharpness of pyramid structure, and another is to remove particles which could attach to the silicon surface during fabricating process. Moreover, we do the surface passivation of silicon using supercritical fluid to repair defects. Finally, we deposited P-type cuprous oxide on silicon substrate with both solution process and reactive sputtering and completed the devices by fabricating the metal electrodes. The reflectivity of silicon substrate was reduced from 29.6% to 15.3% by texturizing the Si surface. The SEM pictures also showed that the sharpness of pyramid structure was successfully reduced with thermal oxidation and etching. However, this led to an increase of reflectivity. The reflectivity increased from 15.3% to 17.7% after removing 0.5μm thermal oxide on the Si surface. Finally, the performance of devices was measured by solar simulator at AM1.5. The best devices showed an open circuit voltage (VOC ) of 0.3V、a short circuit current density (JSC) of 1.03mA/cm2、a full factor (FF) of 0.37 and an energy conversion efficiency (η) of 0.11%. The carrier lifetime of the textured silicon wafer which is passivated with supercritical fluid is only 94.1μs. The carrier lifetime must be improved before a high performance Cu2O/n-Si heterojunction solar call can be obtained.
目次 Table of Contents
第一章 導論 1
1-1 太陽能電池簡介 1
1-2 影響效率的關鍵 1
1-3 太陽能電池基本原理 2
1-4 太陽能電池的電性參數 3
1-1-1 短路電流 5
1-1-2 開路電壓 5
1-1-3 填充因子 6
1-1-4 轉換效率 6
1-5 HIT solar cells 7
1-6 超臨界製程 8
1-6-1 清洗晶圓表面 9
1-6-2 製造產生微米及奈米粒子 9
1-6-3 超臨界流體沉積(Supercritical Fluid Deposition, SCFD) 9
1-7 異質接面太陽能電池(Heterojunction Solar Cells) 10
1-8 矽晶圓表面抗反射結構 10
1-9 矽晶圓表面鈍化(Surface Passivation)的方法 11
1-9-1 熱氧法 11
1-9-2 化學氣相沉積(Chemical Vapor Deposition, CVD) 11
1-9-3化學處理法 12
1-9-4 超臨界流體製程 12
1-10 動機 12
第二章 製程材料與儀器介紹 14
2-1 銅氧化物 14
2-2 反應性濺鍍 15
2-3 氫氧化鉀蝕刻 17
2-4 RCA洗淨製程 17
2-5 濕氧熱氧法 17
2-6 超臨界流體製程 18
2-7 高真空熱蒸鍍系統 18
2-8 量測設備 19
2-8-1 場發射型掃描式電子顯微鏡 19
2-8-2 紫外光-可見光光譜儀 19
2-8-3 四點探針 20
2-8-4 表面輪廓儀 21
2-8-5 雙晶薄膜X光繞射儀 21
2-8-6 太陽光模擬器 23
2-8-7 載子生命週期量測儀 23
第三章 實驗步驟 25
3-1 清洗矽晶圓 25
3-2 表面結構蝕刻 25
3-3 RCA清洗製程 26
3-4 熱氧法氧化製程 26
3-5 超臨界流體製程 27
3-6 氧化銅沉積 27
3-7 鍍電極 28
第四章 結果與討論 29
4-1 矽晶圓基板處理結果分析 29
4-1-1 鹼蝕刻與表面結構分析 29
4-1-2 熱氧法改善結構圓潤角分析 32
4-1-3 矽基板反射率結果分析 34
4-2 超臨界表面鈍化結果 35
4-3 太陽能電池元件結果分析 36
4-3-1 Sol-gel氧化亞銅薄膜太陽能電池元件分析 36
4-3-2 Sputtered氧化銅薄膜太陽能電池元件分析 38
4-4 載子生命週期量測 42
第五章 結論 46
參考文獻 47
參考文獻 References
[1] 翁敏航,太陽能電池-原理、元件、材料、製程與檢測技術,台灣東華書局股份有限公司,2010。
[2] Best Research-Cell Efficiencies, National Renewable Energy Laboratory (NREL), 2015.
[3] A. Ebong, P. Doshi, S. Narasimha, A. Rohatgi, J. Wang, and M. A. El-Sayed, “The Effect of Low and High Temperature Anneals on the Hydrogen Content and Passivation of Si Surface Coated with SiO2 and SiN Films”, J. Electrochem. Soc. volume 146, issue 5, 1921-1924, 1999.
[4] E. H. Nicollian, J. R. Brews, “MOS physics and technology”, John Wiley&Sons Inc., 1982.
[5] William Shockley, Hans J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”, Journal Of Applied Physics Volume 32, Number 3 , 1961.
[6] C. T. Sah, K. A. Yamakawa, and R. Lutwack, “Reduction of solar cell efficiency by bulk defects across the back‐surface‐field junction”, Journal of Applied Physics 53, 3278, 1982.
[7] R. A sinton, Young Kwark, J. Y. Gan, and Richand M. Swanson, ”27.5-Percent Silicon Concentrator Solar Cells”, IEEE Electron Device Letters, Vol. 7. No. 10, October 1986.
[8] Armin G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”, Prog. Photovolt: Res. Appl., 473-787, 2000.
[9] Adams, W. G. and R. E. Day, Proc. R. Soc., A25:p.113, 1887.
[10] S. M. Sze, “Semiconductor Device Physics and Technology”, 2nd edition, John Wiley & Sons, Inc. , New York, 1981.
[11] TOPC,崇越論文大賞,應用仿生抗反射結構於高效率三五族多接面太陽能電池,2010。
[12] Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki, Kazunori Fujita, and Eiji Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer”, IEEE Journal of Photovoltaics, Vol. 4, No. 1, January 2014.
[13] E. Reverchon , R. Adami, “Nanomaterials and supercritical fluids”, J. of Supercritical Fluids, 37 1–22, 2006.
[14] 曾繁銘,超臨界流體技術與應用發展趨勢,工業技術研究院 產業經濟與資訊服務中心,民國91年12月。
[15] Ernesto Reverchon, “Supercritical antisolvent precipitation of micro- and nano-particles”, Journal of Supercritical Fluids, 15 1–21, 1999.
[16] Jennifer Jung, Michel Perrut, “Particle design using supercritical fluids: Literature and patent survey”, Journal of Supercritical Fluids, 20 179–219, 2001.
[17] Zeljko Knez, Eckhard Weidner, “Particles formation and particle design using supercritical fluids”, Current Opinion in Solid State and Materials Science, 7 353–361, 2003.
[18] 談駿嵩,超臨界流體應用,科學發展,359期,民國91年11月。
[19] T Momose, T Ohkubo, T Uelima, T Saito, M. Sugiyama, and Y Shimogaki, “Supercritical Fluid Deposition (SCFD) Technique As A Novel Tool For MEMS Fabrication”, IEEE, 2009.
[20] Fei Gao, Xiao-Jing Liu, Jun-Shan Zhang, Mei-Zhou Song, and Ning Li, “ Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering”, Journal of Applied Physics, 111, 084507, 2012.
[21] E. Scaf, G. Maletta, R. Tomaciello, P. Alessandrini, A.Camanzi, L. De Angelis And F. Galluzzi, “Indium-Doped CdS Film On P-Type Silicon: An Efficient Heterojunction Solar Cell” Solar Cells, 10 17 – 32, 1983.
[22] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching”, Solar Energy Materials & Solar Cells, 90 2319–2328, 2006.
[23] Armin G Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”, Progress in Photovoltaics: Research and Applications, 8 362-376, 1999.
[24] Armin G. Aberle, “Overview on SiN surface passivation of crystalline silicon solar cells”, Solar Energy Materials & Solar Cells, 65 239-248, 2001.
[25] B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3”, Journal Of Applied Physics, 104 044903, 2008.
[26] Oliver Schultz, Ansgar Mette, Martin Hermle and Stefan W. Glunz, “Thermal Oxidation for Crystalline Silicon Solar Cells Exceeding 19% Efficiency Applying Industrially Feasible Process Technology” , Prog. Photovolt: Res. Appl., 16 317–324, 2008.
[27] 徐士翔,“利用超臨界二氧化碳於系基太陽能電池表面鈍化之應用,國立中山大學,2013。
[28] W. Y. Ching, Yong-Nian Xu, and K. W. Wong, “Ground-state and optical properties of Cu2O and CuO crystals”, Phys. Rev., B 40, 7684, 15 October 1989.
[29] 陳乃維,銅氧核殼奈米顆粒間交互作用對自旋極化之影響,中央大學物理學系,2008。
[30] 國立中山大學,“Physical Vapor Deposition -sputtering”實驗講義。
[31] W. Kern and D. A. Puotinen, “Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology”, Current Contents, number 11, March 14, 1983.
[32] 黃書霆,“高速矽穿孔連結之研製與檢測”,國立中山大學,2012。
[33] UV-Visible Spectroscopy, MS University.
[34] 蕭傑穎,封裝材料對於有機發光元件特性與壽命影響之研究,南台科技大學,2004。
[35] Institute of physics, “Episode 530 : x-ray diffraction”.
[36] U. S. Geological Survey Open-File Report 01-041, “A Laboratory Manual For X-Ray Powder Diffraction”.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code