Responsive image
博碩士論文 etd-0618117-132618 詳細資訊
Title page for etd-0618117-132618
論文名稱
Title
應用於生命偵測器之雙頻自我注入鎖定雷達
A Two-Tone Self-Injection-Locked Radar for Life Detectors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-11
繳交日期
Date of Submission
2017-07-18
關鍵字
Keywords
正交相位切換、雙基、自我注入鎖定雷達、無線傳輸、位移監測器、生命偵測、生命監測儀、都卜勒連續波雷達、穿戴式健康監測器
self-injection-locked (SIL) radar, remote ranging, vital sign detection, Displacement monitoring, dual frequency radar, quadrature phase switching
統計
Statistics
本論文已被瀏覽 5859 次,被下載 0
The thesis/dissertation has been browsed 5859 times, has been downloaded 0 times.
中文摘要
本篇論文致力於延伸自我注入鎖定雷達於生命偵測儀與穿戴式裝置中,此系統能夠偵測移動物體的一維振動、位移與距離資訊,生命偵測儀中我們採用的是雙頻單基式自我注入鎖定雷達,穿戴式裝置則是單頻雙基式自我注入鎖定雷達。
在生命偵測儀的部分,為了要達到此目的,本論文加入了一能夠產生0°/90°相位延遲的壓控相移器在正交自我注入鎖定雷達(QSIL)架構,搭配訊號處理,本論文可以克服移動物體都卜勒相位移注入鎖定狀態下非線性失真的問題。量測距離可以藉由同時使用兩頻率量測的技術去比較其解調訊號相位而得,在第二章中操作在2.4 GHz ISM頻帶的實驗中,使用由致動器控制的金屬板來驗證本論文的理論預測。除此之外,另一實驗則是受測者距離雷達1.7 m處量測,該實驗可以根據受試者的微小胸部起伏與心跳,成功地檢測心肺活動和其當下量測距離,於是本論文在低使用頻寬的情況下,同時量測心肺活動與距離資訊。
穿戴式裝置的部分,為了兼顧穿戴式裝置靈敏度、舒適性、與續航性的需求,本論文採用雷達技術進行生理徵象感測。首先,本論文分別利用自我注入鎖定雷達(SIL)與傳統連續波雷達(CW)對1 m外的受測者量測呼吸與心跳以比較其性能,並選定雙基式自我注入鎖定雷達實現一脈搏感測器,穿戴式標籤電路由一個振盪器(SILO)與一個平板天線組成。當放置在受測者的手腕表面橈動脈位置,由同一天線發射並接收由脈搏產生的都卜勒回波訊號使振盪器操作在自我注入鎖定狀態,因此由SILO產生的輸出訊號將被無線頻率解調器所接收並解調得到脈搏資訊。
Abstract
This thesis is devoted to extend self-injection locked (SIL) radar in life detector and wearable device.This system can remotely monitor the 1-D vibration, displacement, and range information of a moving target.
In life detector part, to achieve this goal, an additional phase shifter which provides 0°/90° phase delay is utilized in the quadrature self-injection-locked (QSIL) radar architecture. With the corresponding digital signal processing techniques, the moving target’s Doppler phase shift can be determined without the nonlinear distortion caused by the SIL phenomenon. Then the range information can be figured out by the phase difference of the two demodulated signals that one respectively measured with two different carrier frequencies. In experiments with a prototype operated at 2.4 GHz ISM band, a metal plate controlled by a precise actuator is utilized to verify the theoretical predictions.Moreover, for an individual seated 1.75m away from the radar, the prototype can successfully detect the vital sign and range information based on the subject's tiny chest movement. Accordingly, in the premise of saving spectrum resource, it is demonstrated that the system has promising ability to detect vibration, displacement, and distance with high dynamic range from tiny fluctuation such as vital signs to general case such as motion detection and vibrometering.
In wearable device part,to achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at onemeter distance from the radars to compare the sensitivity versus power consumption between an SIL radar and a CW radar. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by frequency modulating the SILO with the Doppler phase shift. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.
目次 Table of Contents
論文審定書.............................................................................................................i
誌謝..................................................................................................................ii
摘要.................................................................................................................iii
Abstract..............................................................................................................iv
目錄...................................................................................................................v
圖次..................................................................................................................vi
表次..................................................................................................................ix
第一章 序論...........................................................................................................1
1.1 研究背景與動機.................................................................................................1
1.2 位移與生命監測系統..........................................................................................2
1.3 脈搏感測器........................................................................................................8
1.4 章節規劃..........................................................................................................15
第二章 正交自我注入鎖定雷達............................................................................16
2.1 系統架構暨理論推導........................................................................................16
2.2 位移量測實驗...................................................................................................23
2.3 雙頻式正交自我注入鎖定雷達..........................................................................26
2.3.1 金屬板測距...............................................................................................26
2.3.2 生命測距偵測...........................................................................................35
第三章 應用於脈搏感測之雙基式自我注入鎖定雷達.............................................38
3.1 自我注入鎖定雷達與傳統連續波雷達之性能比較...............................................38
3.2 系統架構............................................................................................................45
3.2.1穿戴式標籤電路設計 ..................................................................................45
3.2.2無線頻率鑑別器設計 ..................................................................................49
3.4 實驗結果............................................................................................................50
第四章 結論 ..........................................................................................................53
參考文獻 ..................................................................................................................54
參考文獻 References
[1] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001.
[2] M. I. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008
[3] D. K. Barton, Radar System Analysis and Modeling, MI: Artech House, 2005.
[4] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-band microwave life-detection system,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697-701, Jul. 1986
[5] J. C. Lin, “Microwave sensing of physiological movement and volume change: a review,” Bioelectromagnetics, vol. 13, pp. 557-565, Apr. 1992.
[6] K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000.
[7] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[8] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013.
[9] C. Li (2013, Feb.). Smart radar sensor for accurate tumor tracking in motion adaptive cancer radiotherapy. IEEE lifesciences. [Online]. Available: http://goo.gl/2OU2qb
[10] M. I. Skolnik, “The nature of radar,” in Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001, pp. 1–14.
[11] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in Proc. Asia-Pacific Microwave. Conf., Dec. 2010, pp. 283–290.
[12] R. J. Fontana, “Recent system applications of short-pulse ultra-wideband (UWB) technology,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 9, pp. 2087–2104, Sep. 2004.
[13] Z. Li, W. Li, H. Lv, Y. Zhang, X. Jing, and J. Wang, “A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2086–2092, May 2013.
[14] E. C. Fear, J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, “Microwave breast imaging with a monostatic radar-based system: a study of application to patents,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2119–2128, May 2013.
[15] C. Zhang, M. J. Kuhn, B. C. Merkl, A. E. Fathy, and M. R. Mahfouz, “Real-time noncoherent UWB positioning radar with millimeter range accuracy: theory and experiment,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 1, pp. 9–20, Jan. 2010.
[16] Y. Wang, Q. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 3097–4007, May 2013.
[17] B. Schleicher, I. Nasr, A. Trasser, and H. Schumacher, “IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2076–2085, May 2013.
[18] D. Zito, D. Pepe, M. Mincica, F. Zito, A. Tognetti, A. Lanatà, and D. D. Rossi, “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 503-510, Dec. 2011.
[19] H. G. Han, B. G. Yu, and T. W. Kim, “A 1.9mm-precision 20GS/s real-times sampling receiver using time-extension method for indoor localization,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2015, pp. 352–354.
[20] N. Anderson, K. Granhaug, J. A. Michaelsen, S. Bagga, H. A. Hjortland, M. R. Knutsen, T. S. Lande, and D. T. Wisland, “A 118mW 23.3GS/s dual-band 7.3GHz and 8.7GHz impulse-based direct RF sampling radar SoC in 55nm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2017, pp. 138–140.
[21] T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE Int. Phased Array Systems and Technology Symp. Dig., Waltham, MA, Oct. 2010, pp. 551-558.
[22] T. Mitomo, N. Ono, H. Hoshino, Y. Yoshihara, O. Watanabe, and I. Seto, “A 77 GHz CMOS transceiver for FMCW radar applications,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 928-937, Apr. 2010.
[23] H. J.alli Ng, A. Fischer, R. Ferger, R. Stuhlberger, L. Maurer, and A. Stelzer, “A DLL-supported, low phase noise fractional-N PLL with a wideband VCO and a high linear frequency ramp generator for FMCW radars,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 12, pp. 3289-3302, Dec. 2013.
[24] J. Park, H. Ryu, K.-W. Ha, J.-G. Kim, and D. Baek, “76-81 Ghz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1399-1408, Apr. 2015.
[25] A. G. Stove, “Linear FMCW radar techniques,” IEE Proc. F, Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992.
[26] C. Li,V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046–2060, May 2013.
[27] D. T. Perkie, C. Benton, nad E. Bryan, “Millimeter wave radar for remote measurement of vital signs,” in Proc. IEEE Radar Conf., May 2009, pp. 1–3.
[28] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heart detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.
[29] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60 –GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649–1659, Apr. 2013.
[30] C. Gu, Z. Peng, and C. Li, “High-precision motion detection using low-complexity Doppler radar with digital post-distortion technique,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 961–971, Mar. 2016.
[31] W. Xu, C. Gu, C. Li, and M. Sarrafzadeh, “Robust Doppler radar demodulation via compressed sensing,” IEEE Electron. Lett., vol. 48, no. 22, pp. 1428–1430, Oct. 2012.
[32] S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 3111–3118, Dec. 2014.
[33] H. Zhao, H. Hong, L. Sun, F. Xi, C. Li, and X. Zhu, “Accurate DC offset calibration of Doppler radar via non-convex optimization,” IEEE Electron. Lett., vol. 51, no. 16, pp. 1282–1284, Aug. 2015.
[34] W. D. Boyer, “A diplex, Doppler phase comparison radar,” IEEE Trans. Aerosp. Navig. Electron., vol. ANE-10, no. 1, pp. 27–33, Mar. 1963.
[35] F. Ahmad, M. G. Amin, and P. D. Zemany, “Dual-frequency radars for target localization in urban sensing,” IEEE Trans. Aerosp. Navig. Electron., vol. 45, no. 4, pp. 1598–1609, Oct. 2009.
[36] T. Fan, C. Ma, Z. Gu, Q. Lv, J. Chen, D. Ye, J. Huangfu, Y. Sun, C. Li, and L. Ran, “Wireless hand gesture recognition based on continuous-wave Doppler radar sensors,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 11, pp. 4012–4120, Nov. 2016.
[37] U. R. Archarya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: A review,” Med. Biol. Eng. Comput., vol. 44, no. 12, pp. 1031-1051, Dec. 2006.
[38] J. F. Thayer, S. S. Yamamoto, and J. F. Brosschot, “The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors,” Int. J. Cardiol., vol. 141, no. 2, pp. 122-131, Nov. 2010.
[39] J. M. Gorman and R. P. Sloan, “Heart rate variability in depressive and anxiety disorders,” Am. Heart J., vol. 140, no. 4, pp. S77-S83, Oct. 2000.
[40] A. E. Abbert, B. Seps, and F. Beckers, “Heart rate variability in athletes,” Sports Med., vol. 33, no. 12, pp. 889-919, Oct. 2003.
[41] S. C. Mukhopadhyay, “Wearable sensors for human activity monitoring: A review,” IEEE Sens. J., vol. 15, no. 3, pp. 1321-1330, Dec. 2014.
[42] D. K. Shaeffer, ”MEMS inertial sensors: a tutorial overview,” IEEE Commun.Mag., vol. 51, no. 4, pp.100-109, Apr. 2013.
[43] S. Kwon, J. Lee, G. S. Chung, and K. S. Park, “Validation of heart rate extraction through an iPhone accelerometer,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Boston, MA, Sep. 2011, pp. 5260-5263.
[44] T. Ikari, S. Kurose, T. Igasaki, and M. Kobayashi, “Pulse monitoring by Sol-Gel composite flexible piezoelectric sensors,” in Proc. IEEE Int. Ultrasonics Symp., Chicago, IL, Sep. 2014, pp. 2071-2074.
[45] J. G. Webster, Medical Instrumentation Application and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2009; pp. 147–157.
[46] Y. M. Chi, T.-P. Jung, and G. Cauwenberghs, ”Dry-contact and noncontact biopotential electrodes: methodological review,” IEEE Rev. Biomed. Eng., vol. 3, pp.106-119, Oct. 2010.
[47] B. Chua, P. Cao, S. P. Desai, M. J. Tierney, J. A. Tamada, and A. N. Jina, ”Sensing contact between microneedle array and epidermis using frequency response measurement,” IEEE SensorsJ., vol. 14, no. 2, pp. 333-340, Feb. 2014.
[48] T. I. Oh, S. Yoon, T. E. Kim, H. Wi, K. J. Kim, E. J. Woo, and R. J. Sadleir, ”Nanofiber web textile dry electrodes for long-term biopotential recording,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 2, pp. 204-211, Apr. 2013.
[49] H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, and S.-H. Lee, “CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring,” IEEE Trans. Biomed. Eng., vol. 59, no. 5, pp. 1472-1479, May2012.
[50] F. Wang, G. Li, Y. Duan, and D. Zhang, “Novel semi-dry electrodes for brain-computer interface applications,” J. Neural Eng., vol. 13, no. 4, pp. 046021, Jul. 2016.
[51] K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys., vol. 18, no. 5, pp. 365-372, Jul. 1996.
[52] M. H. Sherebrin and R. Z. Sherebrin, ”Frequency Analysis of the Peripheral Pulse Wave Detected in the Finger with a Photoplethysmograph,” IEEE Trans. Biomedical Eng., vol. 37, no. 3, pp.313-317, Mar. 1990.
[53] H. Fukushima, H. Kawanaka, M. Bhuiyan, and K. Oguri, “Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., San Diego, CA, Sep. 2012, pp. 2901-2904.
[54] Z. Zhang, Z. Pi, and B. Liu, “TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 522-531, Feb. 2015.
[55] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 7-11, Jan. 2011.
[56] D. J. McDuff, J. R. Estepp, A. M. Piasecki and E. B. Blackford. “A survey of remote optical photoplethysmographic imaging methods,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Milan, Italy, Aug. 2015, pp. 6398-6404.
[57] Y. Sun and N. Thakor, “Photoplethysmography revisited: from contact to noncontact, from point to imaging,” IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 463-477, Mar. 2016.
[58] M. I. Skolnik, Introduction to Radar System, 3rd ed. New York: McGraw-Hill, 2001.
[59] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “0.25 μm CMOS and BiCMOS single chip direct conversion Doppler radars for remote sensing of vital signs,” in IEEE Int. Solid State Circuits Conf. Dig., San Francisco, CA,Feb. 2002, pp. 348-349.
[60] T.-Y. J. Kao, Y. Yan, T.-M. Shen, A. Y.-K. Chen, and J. Lin, “Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1649-1659, Apr. 2013.
[61] J. Jang, J. Oh, C.-Y. Kim, and S. Hong, “A 79-GHz adaptive-gain and low-noise UWB radar receiver front-end in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 859-867, Feb. 2016.
[62] V. Giannini, D. Guermandi, Q. Shi, A. Medra, W. V. Thillo, A. Bourdoux, and P. Wambacq, “A 79 GHz phase-modulated 4 GHz-BW CW radar transmitter in 28 nm CMOS,” IEEE J. Solid-State Circuits., vol. 49, no. 12, pp. 2925-2937, Dec. 2014.
[63] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838–848, Mar. 2004.
[64] C. Gu, W. Xu, G. Wang, T. Inoue, J. A. Rice, L. Ran, and C. Li, “Noncontact large-scale displacement tracking: Doppler radar for water level gauging,” IEEE Microw. Compon. Lett., vol. 24, no. 12, pp. 899–901, Dec. 2014.
[65] H.-D. Lin, Y.-S. Lee, H.-L. Shih, and B.-N. Chuang“A novel non-contact radar sensor for affective and interactive analysis,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Osaka, Japan, Jul. 2013, pp. 4706-4709.
[66] B. H. Kim et al., “A Proximity Coupling RF Sensor for Wrist Pulse Detection Based on Injection-Locked PLL,”in IEEE Trans. Microw. Theory Tech., vol. 64, no. 5, pp. 1667-1676, May 2016.
[67] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microwave Symp.Dig., Anaheim, CA, May 2010, pp. 768-771.
[68] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single-antenna doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3577-3587, Dec. 2011.
[69] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, “Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation,”IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4689–4699, Dec. 2013.
[70] G. Shafiq and K. C. Veluvilu, “Surface chest motion decomposition for cardiovascular monitoring,” Scientific Reports, vol. 4, no. 5093, pp. 1–9, May 2014.
[71] H. Gheidi and A. Banai, “An ultra-broadband direct demodulator for microwave FM receivers,”IEEE Trans. Microw. Theory Techn., vol. 59, no. 8, pp. 2131–2139, Aug. 2011.
[72] S. Guan, J. A. Rice, C. Li, and C. Gu, “Automated DC offset calibration strategy for structural health monitoring based on portable CW radar sensor,”IEEE Trans. Instrum. Meas., vol. 63, no. 12, pp. 3111–3118, Dec. 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.151.140
論文開放下載的時間是 校外不公開

Your IP address is 3.15.151.140
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code