Responsive image
博碩士論文 etd-0618117-135346 詳細資訊
Title page for etd-0618117-135346
論文名稱
Title
藉由不同處理方式之極性溶劑製作奈米銀線複合式電極應用於有機光電元件之研究
By using different process with polar solvent produces silver nanowire electrode apply in organic electro-optic devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-11
繳交日期
Date of Submission
2017-07-19
關鍵字
Keywords
極性溶劑二甲基亞碸、有機發光二極體、複合式電極、奈米銀線、反置式有機太陽能電池
Silver Nanowires, Organic Light Emitting Diodes, Compound Electrodes, Dimethyl Sulfoxide, Inverted Organic Solar Cells
統計
Statistics
本論文已被瀏覽 5710 次,被下載 0
The thesis/dissertation has been browsed 5710 times, has been downloaded 0 times.
中文摘要
本研究在製作奈米銀線複合式電極,以奈米銀線與PEDOT:PSS (PH1000)所組成的「複合式導電薄膜」應用於有機光電元件,以取代透明ITO電極,未來更可以此發展製作可撓式有機光電元件。研究中使用極性溶劑「二甲基亞碸(Dimethyl Sulfoxide, DMSO)」對奈米銀線複合式電極溶液摻雜(Dope)處理;以及薄膜後處理,滴定(Drop)與浸泡(Soak)。並分別對這三種手法進行探討,最後製作有機光電元件,有機發光二極體與反置式有機太陽能電池。
使用不同重量比例之PEDOT:PSS (PH1000)配製不同濃度之奈米銀線複合式電極溶液,接著使用上述三種處理手法,比較並探討單層與堆疊多層形成薄膜後之差異以及薄膜面電阻、薄膜穿透度、薄膜表面型態與粗糙。結果發現,摻雜(Dope)處理手法會使奈米銀線複合式電極溶液難以形成薄膜。而使用滴定(Drop)處理手法,則會使薄膜表面產生聚集物,使得薄膜表面粗糙度上升。最後,我們選用以浸泡(Soak)手法處理重量比奈米銀線:酒精PEDOT:PSS (PH1000)為1:90:110之奈米銀線複合式電極溶液,作為有機光電元件之電極,面電阻為10 Ω/sq,可見光波段平均穿透度為76%,表面粗糙度RMS為10 nm。
在光電元件之特性量測我們發現,即使表面粗糙度RMS僅為10 nm,但奈米銀線交疊情形仍會使元件產生漏電,進而影響元件效率。因此,在奈米銀線複合式電極的製作不僅要兼顧薄膜面電阻值以及薄膜穿透度,更要解決奈米銀線堆疊時所產生之穿刺的漏電情形。
Abstract
In this study, we product the compound silver nanowires electrodes with silver nanowires and PEDOT:PSS (PH1000). The electrodes would apply in organic electro-optic devices, and look forward to replace indium tin oxide (ITO). In the future, the hybrid film can develop the flexible organic electro-optic devices.
To enhance the conductivity of the compound electrodes, we used dimethyl sulfoxide (DMSO) to treat the solvent of compound silver nanowires electrodes by doping method, or treat the thin film of compound silver nanowires electrodes by dropping and soaking method. At last, used the thin film electrodes to produce organic electro-optic devices, organic light emitting diodes and inverted organic solar cells.
In this research, we investigated the sheet resistance of compound electrodes, optical transmittance, surface roughness and surface morphology. Then we found that, the doping treatment can not produce the thin film, and the dropping treatment would lead the non-conductive remnant on the surface of the thin film and cause the roughness ascends. Thus, we used the soaking treatment with the solvent, which the weight ratio of silver nanowires, alcohol, and PEDOT:PSS (PH1000) is 1:90:110. The thin film we product by this solvent can performance with sheet resistance 10 (Ω/sq), keeping the average transmittance achieve 76 % in the wavelength of visible light, and the surface RMS is just 10 nm.
By the measurement results of organic electro-optic devices. We found, even though the surface RMS of compound silver nanowires electrodes is about 10 nm, the problem of leakage is still existence. Consequently, the process of compound silver nanowires electrodes is not only care about the conductivity and optical transmittance, but also have to solve the problem of leakage on account of the silver nanowires overlap.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1-1現代顯示器 1
1-1-1 OLED簡介 3
1-2替代性能源 4
1-2-1有機與無機太陽能電池簡介 5
1-3奈米銀線 6
1-3-1奈米銀線簡介 6
1-3-2 奈米銀線應用 7
第二章 理論基礎 8
2-1 OLED元件結構 8
2-1-1雙層A型(Double Layer-A) 9
2-1-2雙層B型(Double Layer-B) 10
2-1-3三層A型(Three Layer-A) 11
2-1-4三層B型(Three Layer-B) 12
2-2 OLED理論基礎 13
2-2-1螢光及磷光 13
2-2-2能量轉移 14
2-2-3濃度淬熄效應 18
2-2-4光色定義 20
2-3 OLED元件基本發光原理 23
2-4 OLED效率定義 25
2-5有機太陽能電池結構演進 27
2-5-1單層結構有機太陽能電池 27
2-5-2雙層異質界面結構有機太陽能電池 28
2-5-3混合層異質界面結構有機太陽能電池 29
2-5-4接合層異質界面結構有機太陽能電池 30
2-6 有機太陽能電池能量及電荷轉移機制 31
2-7 有機太陽能電池光電轉換原理 32
2-7-1吸收入射光產生激子 33
2-7-2激子漂移 34
2-7-3激子分離 35
2-7-4電荷傳輸收集 36
2-8 太陽能電池等效電路 37
2-9 有機太陽能電池光電特性參數 39
2-9-1短路電流(Short Circuit Current,簡稱ISC) 40
2-9-2開路電壓(Open Circuit Voltage,簡稱VOC) 40
2-9-3填充因子(Fill Factor,簡稱F.F.) 41
2-9-4功率轉換效率(Power Conversion Efficiency,簡稱PCE) 41
2-10 PEDOT:PSS導電機制 42
2-10-1 氫離子摻雜 43
2-10-2極性作用力 44
第三章 實驗 46
3-1實驗動機 46
3-2實驗架構 47
3-3實驗材料 49
3-4製程設備 55
3-4-1超音波清洗機(Ultrasonic cleaning) 55
3-4-2旋轉塗佈機(Spin coater) 56
3-4-3電磁加熱攪拌器(hot plate/magnetic stirrer) 56
3-4-4紫外光曝光機(UV exposure) 57
3-4-5電漿清洗機(O2 -plasma) 57
3-4-6手套箱(Glove Box) 58
3-4-7蒸鍍機(Evaporator) 59
3-4-8射頻濺鍍機(Radio-frequency Sputter) 60
3-4-9光纖雷射雕刻機(FLM-S Series Fiber Laser Marker) 61
3-5量測分析 62
3-5-1四點探針儀(Four-point-probe) 62
3-5-2表面輪廓儀(Surface profiler) 63
3-5-3光電子光譜分析儀(Photo-Electron Spectroscopy in Air) 64
3-5-4紫外光-可見光光譜儀(UV-Visible spectrometer) 65
3-5-5原子力掃描探針顯微鏡(Atomic Force Microscopy) 66
3-5-6有機電激發光元件光電特性量測系統 68
3-5-7太陽光譜模擬測量系統(Solar Simulator) 69
3-6藥品配製 70
3-6-1奈米銀線(Silver Nanowires,簡稱AgNWs)水溶液材料 70
3-6-2奈米銀線複合式電極溶液,滴定(Drop)與浸泡(Soak)處理 70
3-6-3奈米銀線複合式電極溶液,摻雜(Dope)處理 71
3-6-4氧化鋅溶膠凝膠 71
3-6-5 P3HT/PCBM材料 71
3-7實驗步驟 72
3-7-1奈米銀線複合式電極薄膜製備及分析 72
3-7-2 ITO基板圖形化 74
3-7-3奈米銀線複合式電極之有機發光二極體陽極圖形化 75
3-7-4 奈米銀線複合式電極為陽極之OLED元件製程 75
3-7-5 ITO為陽極之OLED元件製程 76
3-7-6奈米銀線複合式電極為陰極之反置式OSC元件製程 77
3-7-7 ITO為陰極之反置式OSC元件製程 78
第四章 結果與討論 80
4-1奈米銀線複合式電極薄膜特性分析 80
4-1-1 DMSO薄膜後處理,滴定(Drop) 80
4-1-2 DMSO薄膜後處理,浸泡(Soak) 85
4-1-3 DMSO 溶液處理,摻雜(Dope) 90
4-2 極性溶劑DMSO於後處理手法對於薄膜之影響 93
4-2-1滴定(Drop)與浸泡(Soak)處理手法之薄膜特性比較 93
4-2-2極性溶劑DMSO後處理之影響 94
4-2-3有機光電元件之奈米銀線複合式電極溶液選擇 98
4-3 有機發光二極體元件光電特性分析 100
4-4反置式有機太陽能電池光電特性量測 103
第五章 總結 105
參考文獻 107
參考文獻 References
[1] Cooper, J. S., & Fava, J. A. (2006). Life‐Cycle assessment practitioner survey: Summary of results. Journal of industrial ecology, 10(4), 12-14.
[2] Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
[3] Adachi, C., Tokito, S., Tsutsui, T., & Saito, S. (1988). Organic electroluminescent device with a three-layer structure. Japanese journal of applied physics, 27(4A), L713.
[4] Era, M., Adachi, C., Tsutsui, T., & Saito, S. (1991). Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical physics letters, 178(5-6), 488-490.
[5] Kido, J., Kohda, M., Okuyama, K., & Nagai, K. (1992). Organic electroluminescent devices based on molecularly doped polymers. Applied physics letters, 61(7), 761-763.
[6] Kido, J., Kimura, M., & Nagai, K. (1995). Multilayer white light-emitting organic electroluminescent device. Science-new york then washington, 1332-1332.
[7] Kido, J., Shionoya, H., & Nagai, K. (1995). Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole). Applied physics letters, 67(16), 2281-2283.
[8] Shoustikov, A. A., You, Y., & Thompson, M. E. (1998). Electroluminescence color tuning by dye doping in organic light-emitting diodes. IEEE journal of selected topics in quantum electronics, 4(1), 3-13.
[9] Kallmann, H., & Pope, M. (1959). Photovoltaic effect in organic crystals. The journal of chemical physics, 30(2), 585-586.
[10] Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270(5243), 1789.
[11] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., & Yang, Y. (2005). High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature materials, 4(11), 864-868.
[12] Ma, W., Yang, C., Gong, X., Lee, K., & Heeger, A. J. (2005). Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced functional materials, 15(10), 1617-1622.
[13] Green, M. A. (1982). Solar cells: operating principles, technology, and system applications.
[14] 莊嘉深. (1997). 太陽能工程-太陽電池篇, 全華圖書.
[15] 林耀文. (2015). 以極性非質子溶劑透過摻雜及熱處理提升 PEDOT: PSS 導電性應用於有機發光二極體之研究. 中山大學光電工程研究所學位論文, 1-94.
[16] Ouyang, J., Xu, Q., Chu, C. W., Yang, Y., Li, G., & Shinar, J. (2004). On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer, 45(25), 8443-8450.
[17] 龔宇睿, & 呂奇明. (2014). 電致變色材料發展趨勢. 工業材料雜誌, 光電特刊, (330), 120-129.
[18] Xia, Y., Sun, K., & Ouyang, J. (2012). Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Advanced materials, 24(18), 2436-2440.
[19] Service, R. F. (2003). Technology. Electronic textiles charge ahead. Science, 301(5635), 909.
[20] Aad, G., Abat, E., Abbott, B., Abdallah, J., Abdelalim, A. A., Abdesselam, A., ... & Abreu, H. (2010). Charged-particle multiplicities in pp interactions at measured with the ATLAS detector at the LHC. Physics letters B, 688(1), 21-42.
[21] Ko, H. C., Stoykovich, M. P., Song, J., Malyarchuk, V., Choi, W. M., Yu, C. J., ... & Rogers, J. A. (2008). A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454(7205), 748-753.
[22] Na, S. I., Kim, S. S., Jo, J., & Kim, D. Y. (2008). Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Advanced materials, 20(21), 4061-4067.
[23] Andersson, A., Johansson, N., Broms, P., Yu, N., Lupo, D., & Salaneck, W. R. (1998). Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced materials, 10(11), 859-863.
[24] Liu, S., Ho, S., & So, F. (2016). Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes. ACS applied materials & interfaces, 8(14), 9268-9274.
[25] Ouyang, L., Musumeci, C., Jafari, M. J., Ederth, T., & Inganäs, O. (2015). Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films. ACS applied materials & interfaces, 7(35), 19764-19773.
[26] Haacke, G. (1976). New figure of merit for transparent conductors. Journal of applied physics, 47(9), 4086-4089.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.126.74
論文開放下載的時間是 校外不公開

Your IP address is 52.14.126.74
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code