Responsive image
博碩士論文 etd-0618117-140844 詳細資訊
Title page for etd-0618117-140844
論文名稱
Title
超音波珠擊鍍膜研製高表面硬度1050鋁基複材之研究
Forming high hardness surface composite coating on 1050 Al by ultrasonic mechanical coating and armouring
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
144
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-07-22
關鍵字
Keywords
鋁、熱處理、硬度、超音波珠擊製程、氧化銅
UMCA, Aluminum, CuO, heat treatment, hardness
統計
Statistics
本論文已被瀏覽 5793 次,被下載 31
The thesis/dissertation has been browsed 5793 times, has been downloaded 31 times.
中文摘要
由於鋁擁有優異的化學、物理特性和重量輕等優點,因此被運用在工業非常廣泛。但是鋁表面的硬度低和抗磨耗性質差,因此發展出對鋁進行表面改質的製程,來改善鋁表面的特性。在大多表面處理方法,其製備方法複雜麻煩,或是在運作上有許多必須要到達運轉條件。因此在這份研究中,利用超音波珠擊製程 (UMCA) 來改善鋁表面的機械特性。超音波珠擊製程提供簡單又方便的製程來獲得更好的鋁表面特性。這製程藉由高能量鋼球撞擊,將陶瓷粉末氧化銅打入鋁基板表面上,提升鋁表面的硬度,形成鋁基複合材料。雖然超音波珠擊製程能對表面進行改質,但鍍層與基板的結合程度也在表面處理中,是一個重要的議題。因此為了增加結合程度,在超音波珠擊製程後進行熱處理,透過增加強化層與基板的結合,並且在熱處理中,陶瓷粉末與鋁材進行化學反應,更進一步增強鋁表面的硬度特性。

本實驗經過超音波珠擊製程後,表面硬度比未處理過的母材上升至少4倍以上,從46 Hv 最高提升至279 Hv。在經過超音波珠擊製程,試片表面所儲存的應變能和許多不穩定的缺陷,造成鋁基材和氧化銅鍍層反應溫度往前提,經過熱處理後,產出了奈米級的介金屬化合物,但若使用過高的熱處理溫度,會使銅大量析出,也會消除珠擊過程中導入的應變強化,造成硬度沒提升反而下降至接近與母材相同。於是將熱處理溫度降低,在UMCA 處裡時間為20分鐘,熱處理500oC持溫1小時的試片,硬度為最高,大幅度提升至約10倍,從47 Hv 提升至426 Hv。
Abstract
Because of the excellent physical, chemical properties and light weight, aluminum is widely used in industry and engineering. However, aluminum surface display poor hardness so that the surface modification has been developed and wide studies to improve this situation. The most surface modifications have obstacles or limitation such as inconvenient preparation, respectively high operating temperature, and long operating time etc. In this study, the ultrasonic mechanical coating and armouring (UMCA) will be applied to improve the surface mechanical properties. The UMCA provides a simple and convenient method to obtain better properties of aluminum surface. It coats ceramic powders CuO on a substrate through high-energy ball impacts which form the aluminum metal matrix composite. The ceramic powders are harming into Al substrates leading to increasing the hardness. Although UMCA process can modify the surface properties, the combination is a big deal for UMCA process. Thus, the heat treatment will be proceeded to enhance the boding between coating layers and a substrate. During the heating, Al substrate reacted with powders to generate the intermetallic compounds which further increased the hardness of Al.

After UMCA process, the surface hardness of the UMCA samples can increase 4 times higher than the untreated samples, from 47 Hv up to 279 Hv. On the contrary, On the contrary, the surface hardness decreased to the level of base 1050 Al after exorbitant (580oC) heat treatment due to the generation of pure copper, coarsening of Al2Cu and the elimination of UMCA induced work hardening. Therefore, the heating temperature was lowered and tried at different temperatures. The best resulting hardness is about 10 times of that of the bare Al when sample with 20 min UMCA and 500oC-60 min heat treatment, from 47 Hv up to 426 Hv.
目次 Table of Contents
論文審定書+i
致謝+ii
摘要+iv
Abstract+v
List of Tables+ix
List of Figures+x
Chapter 1 Introduction+1
Chapter 2 Background and Literature Review+4
2-1 Characters of aluminum+4
2-1-1 Aluminum oxide+4
2-1-2 Application of aluminum+6
2-2 Surface modification+7
2-2-1 Electroplating+8
2-2-2 Anodizing +9
2-2-3 Nitriding and carburizing+10
2-2-4 Hot dipping+11
2-2-5 Ultrasonic mechanical coating and armouring (UMCA)+12
2-3 Metal matrix composites+14
2-4 Reaction between Al and CuO+17
2-5 The hardness+20
2-6 Motivation+21
Chapter 3 Experimental Procedures+23
3-1 Sample preparation+23
3-1-1 Raw material+23
3-1-2 The ultrasonic mechanical coating and armouring (UMCA)+23
3-1-3 Heat treatment+24
3-2 Property measurements and analyses+25
3-2-1 Grazing Incidence X-ray diffraction (XRD)+25
3-2-2 Scanning electron microscopy (SEM) +26
3-2-3 Differential scanning calorimetry (DSC)+26
3-2-4 Transmission electron microscopy (TEM)+26
3-2-5 Hardness testing+27
Chapter 4 Results and Discussions+28
4-1 X-ray diffraction analysis+28
4-2 Thermal analyses+30
4-3 Morphology analyses+32
4-4 Hardness property analyses+33
4-5 Hardness prediction+35
Chapter 5 Conclusions+39
References+41
Tables+44
Figures+54
參考文獻 References
[1] J. Mroz, R. H. Dauskardt and U. Schleinkofer, International Journal of Refractory Metals and Hard Materials, 16, (1998) 395-402.
[2] E. Lugscheider, K. Bobzin and M. Möller, Thin Solid Films, 355–356, (1999) 367-373.
[3] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition, (2004) 5-1.
[4] V. A. C. Haanappel, H. D. van Corbach, T. Fransen and P. J. Gellings, Thin Solid Films, 230, (1993) 138-144.
[5] C. Täschner, B. Ljungberg, I. Endler and A. Leonhardt, Surface and Coatings Technology, 116–119, (1999) 891-897.
[6] I. Levin and D. Brandon, JAmCS, 81 (8), (1998) 1995-2012.
[7] Z. Sun, B. Li, P. Hu, F. Ding and F. Yuan, Journal of Alloys and Compounds, 688, Part A, (2016) 933-938.
[8] G. F. Vander Voort and A. I. H. Committee, ASM Handbook, (2004) 784.
[9] Samsonov, G. V., Handbook of the Physicochemical Properties of the Elements, (1968), 387-446
[10] M. F. Ashby, H. Shercliff and D. Cebon, Materials: engineering, science, processing and design, (2013)
[11] T. Yin, R. Wu, Z. Leng, G. Du, X. Guo, M. Zhang and J. Zhang, Surface and Coatings Technology, 225, (2013) 119-125.
[12] S. R. Allahkaram, S. Golroh and M. Mohammadalipour, Materials & Design, 32, (2011) 4478-4484.
[13] J. Andreska, C. Maurer, J. Bohnet and u. U. Schulz, Wear, 319, (2014) 138-144.
[14] I. Mohammadi, A. Afshar and S. Ahmadi, Ceramics International, 42, (2016) 12105-12114.
[15] I. Mohammadi, S. Ahmadi and A. Afshar, Materials Chemistry and Physics, 183, (2016) 490-498.
[16] D. Zhang, Y. Gou, Y. Liu and X. Guo, Surface and Coatings Technology, 236, (2013) 52-57.
[17] J. Kim, W. J. Lee and H. W. Park, Journal of Alloys and Compounds, 679, (2016) 138-148.
[18] W. J. Yang, M. Zhang, Y. H. Zhao, M. L. Shen, H. Lei, L. Xu, J. Q. Xiao, J. Gong, B. H. Yu and C. Sun, Surface and Coatings Technology, 298, (2016) 64-72.
[19] I. Flis-Kabulska, Y. Sun, T. Zakroczymski and J. Flis, Electrochimica Acta, 220, (2016) 11-19.
[20] Y. Yang, M. F. Yan, Y. X. Zhang, C. S. Zhang and X. A. Wang, Surface and Coatings Technology, 304, (2016) 142-149.
[21] Q. Y. Zhang, Y. Zhou, J. Q. Liu, K. M. Chen, J. G. Mo, X. H. Cui and S. Q. Wang, Wear, 344–345, (2015) 22-31.
[22] Y. Wang, J. Xiong, J. Yan, H. Fan and J. Wang, Surface and Coatings Technology, 206, (2011) 1277-1282.
[23] S. V. Komarov, S. E. Romankov, S. H. Son, N. Hayashi, S. D. Kaloshkin, S. Ueno and E. Kasai, Surface and Coatings Technology, 202, (2008) 5180-5184.
[24] S. V. Komarov, S. E. Romankov, N. Hayashi and E. Kasai, Surface and Coatings Technology, 204, (2010) 2215-2222.
[25] S. Romankov, S. V. Komarov, N. Hayashi, S. Ueno, S. Kaloshkin and E. Kasai, Surface and Coatings Technology, 202, (2008) 4285-4290.
[26] H. Arami, A. Simchi and S. M. S. Reihani, Journal of Alloys and Compounds, 465, (2008) 151-156.
[27] D. J. Lloyd, International Materials Reviews, 39, (1994) 1-23.
[28] R. Subramanian, C. G. McKamey, J. H. Schneibel, L. R. Buck and P. A. Menchhofer, Materials Science and Engineering: A, 254, (1998) 199-128.
[29] G. J. Zhang, Y. Beppu and T. Ohji, Acta Materialia, 49, (2001) 77-82.
[30] J. Wang, A. Hu, J. Persic, J. Z. Wen and Y. Norman Zhou, Journal of Physics and Chemistry of Solids, 72, (2011) 620-625.
[31] P. Yu, C. K. Kwok, C. Y. To, T. K. Li and D. H. L. Ng, Composites Part B: Engineering, 39, (2008) 327-331.
[32] M. Hoseini and M. Meratian, Journal of Alloys and Compounds, 471, (2009) 378-382.
[33] M. Tavoosi, F. Karimzadeh and M. H. Enayati, Materials Letters, 62, (2008) 282-285.
[34] M. Rafiei, M. H. Enayati and F. Karimzadeh, Journal of Alloys and Compounds, 488, (2009) 144-147.
[35] C.-F. Chen, P.-W. Kao, L. Chang and N.-J. Ho, MATERIALS TRANSACTIONS, 51, (2010) 933-938.
[36] M. Breslin, J. Ringnalda, L. Xu, M. Fuller, J. Seeger, G. Daehn, T. Otani and H. Fraser, Materials Science and Engineering: A, 195, (1995) 113-119.
[37] Z.-J. Huang, B. Yang, H. Cui and J.-S. Zhang, Materials Science and Engineering: A, 351, (2003) 15-22.
[38] Commodity Prices, Retrieved 18 October 2016,
[39] B. Dikici and M. Gavgali, Journal of Alloys and Compounds, 551, (2013) 101-107.
[40] J. J. Granier, K. B. Plantier and M. L. Pantoya, Journal of Materials Science, 39, (2004) 6421-6431.
[41] P. Yu, C.-J. Deng, N.-G. Ma, M.-Y. Yau and D. H. L. Ng, Acta Materialia, 51, (2003) 3445-3454.
[42] T. Fan, D. Zhang, G. Yang, T. Shibayanagi and M. Naka, Journal of Materials Processing Technology, 142, (2003) 556-561.
[43] G. Chen, G.-X. Sun and Z.-G. Zhu, Materials Science and Engineering: A, 265, (1999) 197-201.
[44] C. J. Hsu, P. W. Kao and N. J. Ho, Scripta Materialia, 53, (2005) 341-345.
[45] Z. S. Wu Jinming, Li Zhizhang, Wu Nianqiang, Trans. Nonferrous Met. Soc. China, 9, (1999) 716-722.
[46] G. Zhao, Z.-M. Shi and R.-Y. Zhang, Acta Metallurgica Sinica (English Letters), 28, (2015) 699-706.
[47] G. H. Zahid, T. Azhar, M. Musaddiq, S. S. Rizvi, M. Ashraf, N. Hussain and M. Iqbal, Materials & Design, 32, (2011) 1630-1635.
[48] G. Zhao, Z. Shi, N. Ta, G. Ji and R. Zhang, Materials & Design, 66, (2015) 492-497.
[49] Y. S. Sato, S. H. C. Park and H. Kokawa, Metallurgical and Materials Transactions A, 32, (2001) 3033-3042.
[50] J. D. Embury, Metallurgical Transactions A, 16, (1985) 2191-2200.
[51] J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt and J. M. Schoenung, Scripta Materialia, 53, (2005) 481-486.
[52] H. S. Kim, Materials Science and Engineering: A, 289, (2000) 30-33.
[53] J. R. Craig and D. J. Vaughan, Ore Microscopy and Ore Petrography, (1981) 400.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code