Responsive image
博碩士論文 etd-0618117-142151 詳細資訊
Title page for etd-0618117-142151
論文名稱
Title
以低損耗五氧化二鉭環形共振腔實現低操作功率波長轉換
Wavelength conversion with low operation power in low loss Ta2O5 based micro-ring resonator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-19
繳交日期
Date of Submission
2017-07-18
關鍵字
Keywords
共振腔、波導、微環、五氧化二鉭、四波混頻
Tantalum Pentoxide(Ta2O5), Waveguide, Resonant cavity, Four-wave mixing, Micro-ring
統計
Statistics
本論文已被瀏覽 5758 次,被下載 28
The thesis/dissertation has been browsed 5758 times, has been downloaded 28 times.
中文摘要
本論文中,我們利用五氧化二鉭(Ta2O5)薄膜,製作高品質低損耗環形共振腔,並實現低操作功率波長轉換。首先,以ma-N2410負光阻,搭配ma-D525顯影液製作環形共振腔,經量測後最佳環腔元件在間距700nm,其品質因子(Quality factor, Q)為50615,環腔傳播損耗為0.5cm^-1,其對應的Unload Q為182000,這些值相較於文獻中以Ta2O5製備之環形共振腔是最好的。
接著,我們利用Ta2O5環形共振腔元件首度實現簡併態四波混頻,在注入6mW的功率下產生-30dB的轉換效率,與本實驗室過去長直波導做四波混頻約-49dB比較,環形共振腔只需要低操作功率,就能產生高四波混頻轉換效率。同時,估算出非線性折射率(n2)為1.4×10^-14cm^2/W,與其他工作如自相位調變、直線四波混頻等量測出Ta2O5的n2皆為同個數量級。另外,我們也利用轉換效率公式分析影響轉換效率的重要參數。從其n2比Si3N4高近一個數量級與無雙光子吸收等非線性損耗之優異特性,我們認為利用Ta2O5非線性波導產生寬頻光源具有相當大的潛力。
Abstract
In this thesis, we have demonstrated wavelength conversion with low operation power in low loss Ta2O5 based micro-ring resonator. Based on a reflow process on the developed resist, the sidewall of waveguide device is optimized and becomes smooth. The propagation loss of ring resonator with diameter of 100μm is as low as 0.5cm^-1, and the gap between waveguide and ring cavity is set as 700nm. The corresponding loaded/unloaded Q are 50000/182000. It is a current record of Ta2O5 based micro-ring resonator. For nonlinear optical applications, the high efficient four-wave mixing conversion efficiency of -30dB has been achieved by using high quality factor Ta2O5 based micro-ring resonator at pump power of merely 6mW. With the ring resonator, the four-wave mixing conversion efficiency can be significantly enhanced by comparing to that of straight waveguide structure. In addition, the nonlinear refractive index (n2) of Ta2O5 at 1550nm is estimated to be 1.4×10^-14cm^2/W, which is higher than other optical materials (For instance, SiO2, Si3N4, AlN and Hydex…etc.). As a result, Ta2O5 based micro-ring resonator shows great potentials in developing chip-scale nonlinear photonics.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
第一章 緒論 1
1.1非線性波導簡介 1
1.2四波混頻原理介紹 4
1.3四波混頻文獻回顧 7
1.4五氧化二鉭(Ta2O5)光電元件應用與文獻回顧 10
1.5論文動機 13
1.6論文架構 15
第二章 微環形共振腔元件製程與量測方法 16
2.1微環形共振腔與波導幾何結構設計 17
2.2元件製程介紹 20
2.2.1薄膜沉積 22
2.2.2熱退火(Annealing) 28
2.2.3薄膜光學特性量測 29
2.2.4電子束微影(E-beam lithography) 30
2.2.5顯影(Developer) 33
2.2.6蝕刻(Etch) 36
2.2.7電漿輔助化學氣相沉積(PECVD) 38
2.2.8切割(Dicing) 39
2.2.9研磨(Polish) 41
2.3微環形共振腔品質因子量測 42
2.3.1環形共振腔原理與品質因子 43
2.3.2不同顯影液製程之元件穿透譜分析 46
2.4結論 48
第三章 以五氧化二鉭微環形共振腔進行四波混頻量測和研究 49
3.1四波混頻量測 50
3.2 環腔內四波混頻轉換效率分析 52
3.2.1相位匹配分析 53
3.2.2環腔增強因子分析 56
3.2.3非線性折射率估算 57
3.2.4不同耦合係數對四波混頻轉換效率之影響 58
3.3 Ta2O5波導能量相依性 59
3.4不同環腔內傳播損耗對四波混頻轉換效率之影響 61
3.5四波混頻轉換效率和文獻比較 63
3.6章節結論 66
第四章 結論與未來展望 67
附錄 69
前言 69
Ta2O5裸波導製程 70
Ta2O5裸波導與二維材料整合之可能與應用 72
參考文獻 73
參考文獻 References
[1] Coaxial cable. Available: https://zh.wikipedia.org/wiki/同轴电缆
[2] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in Proceedings of the Institution of Electrical Engineers, 1966, pp. 1151-1158.
[3] A. Alduino and M. Paniccia, "Interconnects: Wiring electronics with light," Nature Photonics, vol. 1, p. 153, 2007.
[4] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor," Nature, vol. 427, pp. 615-618, 2004.
[5] Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide," Optics letters, vol. 30, pp. 35-37, 2005.
[6] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Optics express, vol. 15, pp. 430-436, 2007.
[7] P. Dong, S. F. Preble, and M. Lipson, "All-optical compact silicon comb switch," Optics express, vol. 15, pp. 9600-9605, 2007.
[8] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, "All-optical switching on a silicon chip," Optics Letters, vol. 29, pp. 2867-2869, 2004.
[9] Y. Vlasov, W. M. Green, and F. Xia, "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks," nature photonics, vol. 2, pp. 242-246, 2008.
[10] Dense Wavelength Division Multiplexing,DWDM. Available: https://en.wikipedia.org/wiki/Wavelength-division_multiplexing
[11] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature, vol. 431, pp. 1081-1084, 2004.
[12] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, vol. 441, pp. 960-963, 2006.
[13] T. J. Kippenberg, R. Holzwarth, and S. Diddams, "Microresonator-based optical frequency combs," Science, vol. 332, pp. 555-559, 2011.
[14] G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE Journal of Quantum Electronics, vol. 25, pp. 2297-2306, 1989.
[15] P. Kean, K. Smith, and W. Sibbett, "Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre," IEE Proceedings J-Optoelectronics, vol. 134, pp. 163-170, 1987.
[16] H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μ m wavelength," Applied Physics Letters, vol. 80, pp. 416-418, 2002.
[17] C.-Y. Tai, J. S. Wilkinson, N. M. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, "Determination of nonlinear refractive index in a Ta 2 O 5 rib waveguide using self-phase modulation," Optics express, vol. 12, pp. 5110-5116, 2004.
[18] S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature, vol. 445, pp. 627-630, 2007.
[19] G. Roelkens, U. D. Dave, S. Keyvaninia, F. Leo, S. Uvin, K. Van Gasse, Z. Wang, S. Latkowski, E. Bente, and B. Kuyken, "Frequency comb generation in III-V-on-silicon photonic integrated circuits," in Advanced photonics Congress (IPR, NOMA, Sensors, Networks, SPPCom, SOF), 2016.
[20] R. A. McCracken, J. Sun, C. G. Leburn, and D. T. Reid, "Broadband phase coherence between an ultrafast laser and an OPO using lock-to-zero CEO stabilization," Optics Express, vol. 20, pp. 16269-16274, 2012.
[21] Y. K. Chembo, "Kerr optical frequency combs: theory, applications and perspectives," Nanophotonics, vol. 5, pp. 214-230, 2016.
[22] F. Li, J. Yuan, Z. Kang, Q. Li, and P. Wai, "Modeling Frequency Comb Sources," Nanophotonics, vol. 5, pp. 292-315, 2016.
[23] S. Diddams, T. Udem, J. Bergquist, E. Curtis, R. Drullinger, L. Hollberg, W. Itano, W. Lee, C. Oates, and K. Vogel, "An optical clock based on a single trapped 199Hg+ ion," Science, vol. 293, pp. 825-828, 2001.
[24] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, "An optical lattice clock," Nature, vol. 435, pp. 321-324, 2005.
[25] M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science, vol. 311, pp. 1595-1599, 2006.
[26] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'odorico, M. T. Murphy, and T. Kentischer, "Laser frequency combs for astronomical observations," Science, vol. 321, pp. 1335-1337, 2008.
[27] C.-H. Li, A. J. Benedick, C. E. Cramer, G. Chang, L.-J. Chen, P. Fendel, G. Furesz, A. G. Glenday, F. X. Kaertner, and D. F. Phillips, "Femtosecond laser frequency comb for precision astrophysical spectroscopy," in Conference on Lasers and Electro-Optics, 2009, p. CMII1.
[28] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics vol. 22: Wiley New York, 1991.
[29] S. P. Singh and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, vol. 73, pp. 249-275, 2007.
[30] O. Aso, M. Tadakuma, and S. Namiki, "Four-wave mixing in optical fibers and its applications," dEp, vol. 1, p. 2, 1999.
[31] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature, vol. 450, pp. 1214-1217, 2007.
[32] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, "Optical frequency comb generation from aluminum nitride microring resonator," Optics letters, vol. 38, pp. 2810-2813, 2013.
[33] A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, "Silicon-chip mid-infrared frequency comb generation," Nature Communications, vol. 6, 2015.
[34] A. D. Bristow, N. Rotenberg, and H. M. Van Driel, "Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm," Applied Physics Letters, vol. 90, p. 191104, 2007.
[35] L. Wang, L. Chang, N. Volet, M. H. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, "Frequency comb generation in the green using silicon nitride microresonators," Laser & Photonics Reviews, vol. 10, pp. 631-638, 2016.
[36] J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators," Optics letters, vol. 29, pp. 769-771, 2004.
[37] D. Rafizadeh, J. Zhang, S. Hagness, A. Taflove, K. Stair, S. Ho, and R. Tiberio, "Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range," Optics Letters, vol. 22, pp. 1244-1246, 1997.
[38] P. Absil, J. Hryniewicz, B. Little, P. Cho, R. Wilson, L. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Optics letters, vol. 25, pp. 554-556, 2000.
[39] D.-I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Optics letters, vol. 33, pp. 660-662, 2008.
[40] M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Optics express, vol. 16, pp. 20374-20381, 2008.
[41] I. S. Grudinin, N. Yu, and L. Maleki, "Generation of optical frequency combs with a CaF 2 resonator," Optics letters, vol. 34, pp. 878-880, 2009.
[42] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. Hänsch, N. Picqué, and T. J. Kippenberg, "Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators," Nature communications, vol. 4, p. 1345, 2013.
[43] I. S. Grudinin, L. Baumgartel, and N. Yu, "Frequency comb from a microresonator with engineered spectrum," Optics express, vol. 20, pp. 6604-6609, 2012.
[44] I. Asano, Y. Nakamura, M. Hiratani, T. Nabatame, S. Iijima, T. Saeki, T. Futase, S. Yamomoto, T. Saito, and T. Sekiguchi, "Development of MIM/Ta2O5 capacitor process for 0.10‐µm DRAM," Electronics and Communications in Japan (Part II: Electronics), vol. 87, pp. 26-36, 2004.
[45] M. F. A. Muttalib, R. Y. Chen, S. J. Pearce, and M. D. Charlton, "Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, p. 041304, 2014.
[46] L. Dan-Feng and Q. Zhi-Mei, "Glass/Ta2O5 Composite Waveguides for Application as an Integrated Polarimetric Interferometer," Chinese Physics Letters, vol. 27, p. 104206, 2010.
[47] K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, "Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions," Biosensors and Bioelectronics, vol. 22, pp. 2591-2597, 2007.
[48] H. Takahashi, S. Suzuki, and I. Nishi, "Wavelength multiplexer based on SiO/sub 2/-Ta/sub 2/O/sub 5/arrayed-waveguide grating," Journal of Lightwave Technology, vol. 12, pp. 989-995, 1994.
[49] B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellso, N. M. Perney, N. P. Sessions, and J. S. Wilkinson, "Fabrication of submicrometer high refractive index Tantalum Pentoxide waveguides for optical propulsion of microparticles," IEEE Photonics Technology Letters, vol. 21, pp. 1408-1410, 2009.
[50] P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, "Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum," Optics express, vol. 21, pp. 6967-6972, 2013.
[51] C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, "Low-loss and high-Q Ta 2 O 5 based micro-ring resonator with inverse taper structure," Optics express, vol. 23, pp. 26268-26275, 2015.
[52] T.-w. Liao, "High Quality and Low-loss Ta2O5 Micro-ring Resonator Optimization and Application," 2016.
[53] B.-T. Chen, "Novel Nonlinear Waveguide Material Tantalum Pentoxide & MicroRing Fabrication," 2014.
[54] A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Optics express, vol. 17, pp. 11366-11370, 2009.
[55] M. Shearn, K. Diest, X. Sun, A. Zadok, H. Atwater, A. Yariv, and A. Scherer, "Advanced silicon processing for active planar photonic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, pp. 3180-3182, 2009.
[56] D. W. Huang, "Fundamentals and Applications of Optical Waveguides, Chapter 4 Coupled Mode Theory."
[57] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, pp. 47-73, 2012.
[58] D. G. Rabus, "Ring resonators: Theory and modeling," Integrated Ring Resonators: The Compendium, pp. 3-40, 2007.
[59] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, "Full stabilization of a microresonator-based optical frequency comb," Physical Review Letters, vol. 101, p. 053903, 2008.
[60] A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, "Ultra-low power parametric frequency conversion in a silicon microring resonator," Optics express, vol. 16, pp. 4881-4887, 2008.
[61] Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, "Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion," Applied optics, vol. 50, pp. 1260-1265, 2011.
[62] D. Tan, K. Ikeda, P. Sun, and Y. Fainman, "Group velocity dispersion and self phase modulation in silicon nitride waveguides," Applied Physics Letters, vol. 96, p. 061101, 2010.
[63] M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, "Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures," Nature photonics, vol. 2, p. 737, 2008.
[64] M. Ji, H. Cai, L. Deng, Y. Huang, Q. Huang, J. Xia, Z. Li, J. Yu, and Y. Wang, "Enhanced parametric frequency conversion in a compact silicon-graphene microring resonator," Optics express, vol. 23, pp. 18679-18685, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code