Responsive image
博碩士論文 etd-0618117-153502 詳細資訊
Title page for etd-0618117-153502
論文名稱
Title
以五氧化二鉭光波導元件實現色度色散與熱光係數量測之研究
Group Velocity Dispersion and Thermo-optic coefficients Measurement In Tantalum Pentoxide Based Optical Waveguides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-19
繳交日期
Date of Submission
2017-07-18
關鍵字
Keywords
五氧化二鉭、微環、波導、熱光係數、色散、共振腔
Dispersion, Resonator, Tantalum pentoxide(Ta2O5), Thermal-optical coefficient, Waveguide, Micro-ring
統計
Statistics
本論文已被瀏覽 5692 次,被下載 22
The thesis/dissertation has been browsed 5692 times, has been downloaded 22 times.
中文摘要
本篇論文為探討五氧化二鉭(Ta2O5)光波導之研究,我們選擇開發了五氧化二鉭,利用該材料擁有寬能隙、高非線性折射係數以及在可見光至紅外光區無吸收的特性,使之在非線性光波導應用有極大的潛力。然而,波導的色散補償與材料的熱光效應對線性與非線性元件的基本特性影響極大,故首先本論文透過馬赫-曾德爾調製器(MZI)光波導結構進行全波段的色散量測,在波導尺寸大小為700×400nm^2與700×700nm^2的結構下,測得Ta2O5波導元件的群折射係數,並獲得實驗推算的色散值分別為‒1300ps/km•nm、‒460ps/km•nm,實驗結果與商用模擬軟體相符。此外,我們使用環形共振腔結構進行Ta2O5熱光係數之研究,由於環腔對折射率變動相當敏感,當環境溫度從20℃升至40℃,其共振頻譜的中心波長由1543.430 nm紅移至1543.586 nm,故在考慮熱光效應以及熱膨脹效應下,我們成功地估算出Ta2O5材料熱光係數為6.8×10^-6/K,該數值較常見的矽(Si)小兩個數量級,根據我們的研究結果證實了Ta2O5在材料的熱穩定性、與熱不敏感特性對其發展分波多工器、濾波器,顯現極大的潛力。
Abstract
Tantalum pentoxide (Ta2O5) of a large bandgap material has recently utilized to demonstrate nonlinear optical waveguide applications due to its superior linear and nonlinear optical properties, including low absorption loss coefficient in visible to infrared regions, high Kerr coefficients, and free of nonlinear absorption. In this work, we have successfully fabricated Ta2O5 based Mach-Zehnder interferometer (MZI) waveguide structures. The waveguide width is fixed as 700nm, and the waveguide height is varied from 400nm to 700nm, the chromatic dispersion is significantly tuned from normal dispersion to anomalous dispersion regions. In addition, the experimental results have been compared to that of simulated by using the commercial tools (RSoft, Beam propagation method). Moreover, the thermal-optical coefficient of Ta2O5 has been investigated experimentally by using a micro-ring resonator structure. Taking the advantage of index-sensitively property of ring resonator, the material with ultralow thermal-optical coefficient is easily to be measured and analyzed by using a ring waveguide structure. The central wavelength of micro-ring resonator is red-shifted from 1543.430 nm to 1543.586 nm when the substrate temperature increases from 20 to 40ºC. By considering the thermal-optical and thermal expansion effect of micro-ring resonator, the thermal-optical coefficient of Ta2O5 is estimated to be 6.8×10^-6/K at ~1550 nm. The thermal-optical coefficient of Ta2O5 is ten times of magnitude less than those of conventional III-V semiconductors, indicating that Ta2O5 supports the development of thermal-insensitive devices, such as sub-multiplexer and filter element.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1 五氧化二鉭材料回顧與應用 1
1.2 研究動機與目標 8
1.3 論文架構 9
第二章 以整合式五氧化二鉭馬赫-曾德爾調製器進行色度色散量測 10
2.1 前言 10
2.2 介紹 11
2.2.1 以馬赫-曾德爾調變器進行色度色散之操作原理 11
2.2.2 材料的光學特性 13
2.2.3 波導結構設計 15
2.3 五氧化二鉭馬赫-曾德爾調變器製備 18
2.3.1 薄膜沉積 20
2.3.2 熱退火(Annealing) 23
2.3.3 薄膜之光學特性 26
2.3.4 電子束微影(E-beam Lithography) 28
2.3.5 顯影 31
2.3.6 乾蝕刻(ICP-RIE) 33
2.3.7 電漿輔助化學氣相沉積(PECVD) 35
2.3.8 切割(Dicing) 36
2.3.9 研磨(Polishing) 38
2.4 元件量測與分析 39
2.4.1 馬赫-曾德爾干涉頻譜量測 42
2.4.2 波導群折射率及色度色散分析 43
2.4.3 波導結構與色度色散關係分析 46
2.5 結論 47
第三章 以微環形共振腔進行五氧化二鉭光波導熱光係數量測 48
3.1 介紹 48
3.2 元件製程與模擬 49
3.3 系統架設與操作原理 52
3.4 量測分析 56
3.4.1 變溫度下推算五氧化二鉭折射率變化與熱光係數 56
3.4.2 變溫之群折射率與等效折射率計算結果之比較 61
3.4.3 與矽波導之等效折射率計算結果之比較 63
3.4.4 變功率之量測結果 68
3.4.5 與矽波導量測結果之比較 70
3.5 結論 72
第四章 結論與未來工作 74
附錄 75
A.1 前言 75
A.2 元件設計與模擬 76
A.3 未來工作 80
參考文獻 81
參考文獻 References
[1] ta2o5. Available: https://en.wikipedia.org/wiki/Tantalum_pentoxide
[2] dram. Available: http://www.enigmatic-consulting.com/semiconductor_processing/CVD_Fundamentals/films/Ta2O5.html
[3] G. Oehrlein, "Oxidation temperature dependence of the dc electrical conduction characteristics and dielectric strength of thin Ta2O5 films on silicon," Journal of applied physics, vol. 59, no. 5, pp. 1587-1595, 1986.
[4] J.-C. Zhou, D.-T. Luo, Y.-Z. Li, and L. Zheng, "Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films," Transactions of Nonferrous Metals Society of China, vol. 19, no. 2, pp. 359-363, 2009.
[5] M. F. A. Muttalib, R. Y. Chen, S. J. Pearce, and M. D. Charlton, "Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 32, no. 4, p. 041304, 2014.
[6] E. E. Perl, W. E. McMahon, J. E. Bowers, and D. J. Friedman, "Material selection and fabrication parameters for antireflective nanostructures integrated with multijunction photovoltaics," in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 2014, pp. 1174-1179: IEEE.
[7] D.-I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Optics letters, vol. 33, no. 7, pp. 660-662, 2008.
[8] C.-L. Wu, Y.-J. Chiu, C.-L. Chen, Y.-Y. Lin, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, "Low-loss submicron Ta2O5 optical waveguide and nonlinear optical application," in Optical Fiber Communications Conference and Exhibition (OFC), 2016, 2016, pp. 1-3: IEEE.
[9] J. Leuthold, C. Koos, and W. Freude, "Nonlinear silicon photonics," Nature Photonics, vol. 4, no. 8, p. 535, 2010.
[10] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Optics Express, vol. 13, no. 12, pp. 4629-4637, 2005.
[11] A. G. Griffith, R. K. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, and C. B. Poitras, "Silicon-chip mid-infrared frequency comb generation," Nature Communications, vol. 6, 2015.
[12] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nature photonics, vol. 4, no. 1, pp. 37-40, 2010.
[13] I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, "Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiN x waveguides," Optics letters, vol. 37, no. 14, pp. 2997-2999, 2012.
[14] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature, vol. 450, no. 7173, pp. 1214-1217, 2007.
[15] J. Giordmaine, "Mixing of light beams in crystals," Physical Review Letters, vol. 8, no. 1, p. 19, 1962.
[16] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. Little, and D. Moss, "CMOS-compatible integrated optical hyper-parametric oscillator," Nature Photonics, vol. 4, no. 1, pp. 41-45, 2010.
[17] M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Optics express, vol. 16, no. 25, pp. 20374-20381, 2008.
[18] A. Deepthy, D. Ambika, D. G. Sajan, V. Kumar, and V. Nampoori, "Third order nonlinear optical properties of ZnO thin films using z-scan technique."
[19] H. Jung and H. X. Tang, "Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion," Nanophotonics, vol. 5, no. 2, pp. 263-271, 2016.
[20] P. Rabiei, A. Rao, J. Chiles, J. Ma, and S. Fathpour, "Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates," Optics letters, vol. 39, no. 18, pp. 5379-5382, 2014.
[21] C.-L. Wu, B.-T. Chen, Y.-Y. Lin, W.-C. Tien, G.-R. Lin, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, "Low-loss and high-Q Ta 2 O 5 based micro-ring resonator with inverse taper structure," Optics express, vol. 23, no. 20, pp. 26268-26275, 2015.
[22] C.-L. Wu, Y.-J. Chiu, C.-L. Chen, Y.-Y. Lin, A.-K. Chu, and C.-K. Lee, "Four-wave-mixing in the loss low submicrometer Ta 2 O 5 channel waveguide," Optics letters, vol. 40, no. 19, pp. 4528-4531, 2015.
[23] Y.-Y. Lin, C.-L. Wu, W.-C. Chi, Y.-J. Chiu, Y.-J. Hung, A.-K. Chu, and C.-K. Lee, "Self-phase modulation in highly confined submicron Ta 2 O 5 channel waveguides," Optics Express, vol. 24, no. 19, pp. 21633-21641, 2016.
[24] C. L. Wu, C. H. Hsieh, G. R. Lin, W. C. Chi, Y. J. Chiu, Y. Y. Lin, Y. Hung Jr, M. H. Shih, A. K. Chu, and C. K. Lee, "Tens of GHz Tantalum pentoxide‐based micro‐ring all‐optical modulator for Si photonics," Annalen der Physik, 2016.
[25] E. Dulkeith, F. Xia, L. Schares, W. M. Green, L. Sekaric, and Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires: errata," Opt. Express, vol. 14, no. 13, p. 6372, 2006.
[26] D. Tan, K. Ikeda, P. Sun, and Y. Fainman, "Group velocity dispersion and self phase modulation in silicon nitride waveguides," Applied Physics Letters, vol. 96, no. 6, p. 061101, 2010.
[27] G. Ghosh, "Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals," Optics communications, vol. 163, no. 1, pp. 95-102, 1999.
[28] B. Tatian, "Fitting refractive-index data with the Sellmeier dispersion formula," Applied optics, vol. 23, no. 24, pp. 4477-4485, 1984.
[29] Ion Plating. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=2956
[30] A. Chu, Y. Huang, and S. Tang, "Room-temperature radio frequency sputtered Ta 2 O 5: A new etch mask for bulk silicon dissolved processes," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, no. 2, pp. 455-459, 1999.
[31] C. Joseph, P. Bourson, and M. Fontana, "Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy," Journal of Raman Spectroscopy, vol. 43, no. 8, pp. 1146-1150, 2012.
[32] A. Gondarenko, J. S. Levy, and M. Lipson, "High confinement micron-scale silicon nitride high Q ring resonator," Optics express, vol. 17, no. 14, pp. 11366-11370, 2009.
[33] M. Shearn, K. Diest, X. Sun, A. Zadok, H. Atwater, A. Yariv, and A. Scherer, "Advanced silicon processing for active planar photonic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, no. 6, pp. 3180-3182, 2009.
[34] L. Jonsson, J. Westlinder, F. Engelmark, C. Hedlund, J. Du, U. Smith, and H.-O. Blom, "Patterning of tantalum pentoxide, a high epsilon material, by inductively coupled plasma etching," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 4, pp. 1906-1910, 2000.
[35] A.-L. Fehrembach, F. Lemarchand, A. Talneau, and A. Sentenac, "High Q Polarization Independent Guided-Mode Resonance Filter With “Doubly Periodic” Etched Ta $ _2 $ O $ _5 $ Bidimensional Grating," Journal of Lightwave Technology, vol. 28, no. 14, pp. 2037-2044, 2010.
[36] K. Lee, K. Jung, R. Singh, S. Pearton, C. Hobbs, and P. Tobin, "Comparison of plasma chemistries for dry etching of Ta 2 O 5," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 4, pp. 1169-1172, 2000.
[37] C. Chaneliere, J. Autran, R. Devine, and B. Balland, "Tantalum pentoxide (Ta 2 O 5) thin films for advanced dielectric applications," Materials Science and Engineering: R: Reports, vol. 22, no. 6, pp. 269-322, 1998.
[38] T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Stöferle, and R. Mahrt, "Fabrication and characterization of Ta 2 O 5 photonic feedback structures," Microelectronic Engineering, vol. 85, no. 5, pp. 1425-1428, 2008.
[39] S. Cho, Y. Kim, D. Yoon, J. Kim, H. Yoon, Y. Im, and G. Jang, "Optical characterization of silica based waveguide prepared by plasma enhanced chemical vapor deposition," Journal of the Korean Physical Society, vol. 42, no. Suppl., pp. 947-951, 2003.
[40] I. Pereyra and M. Alayo, "High quality low temperature DPECVD silicon dioxide," Journal of Non-Crystalline Solids, vol. 212, no. 2-3, pp. 225-231, 1997.
[41] J. Fitch, S. Kim, and G. Lucovsky, "Thermal stabilization of device quality films deposited at low temperatures," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 8, no. 3, pp. 1871-1877, 1990.
[42] A. Langford, M. Fleet, B. Nelson, W. Lanford, and N. Maley, "Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon," Physical Review B, vol. 45, no. 23, p. 13367, 1992.
[43] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature, vol. 441, no. 7096, pp. 960-963, 2006.
[44] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, Y. Okawachi, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon waveguides," in Conference on Lasers and Electro-Optics, 2006, p. CTuU4: Optical Society of America.
[45] M. R. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As 2 S 3 waveguides for parametric gain and wavelength conversion," Optics express, vol. 15, no. 15, pp. 9458-9463, 2007.
[46] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2012.
[47] 廖挺位, "高品質與低損耗五氧化二鉭微環形共振腔優化與應用," 中山大學光電工程研究所學位論文, pp. 1-82, 2016.
[48] A. Chu, H. Lin, and W. Cheng, "Temperature dependence of refractive index of Ta2O5 Dielectric Films," Journal of electronic materials, vol. 26, no. 8, pp. 889-892, 1997.
[49] J. Levy, "Integrated nonlinear optics in silicon nitride waveguides and resonators," 2011.
[50] Y.-J. Hung, C.-J. Wu, T.-H. Chen, T.-H. Yen, and Y.-C. Liang, "Superior Temperature-Sensing Performance in Cladding-Modulated Si Waveguide Gratings," Journal of Lightwave Technology, vol. 34, no. 18, pp. 4329-4335, 2016.
[51] G. Cocorullo, F. Della Corte, and I. Rendina, "Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm," Applied physics letters, vol. 74, no. 22, pp. 3338-3340, 1999.
[52] A. Arbabi and L. L. Goddard, "Measurements of the refractive indices and thermo-optic coefficients of Si 3 N 4 and SiO x using microring resonances," Optics letters, vol. 38, no. 19, pp. 3878-3881, 2013.
[53] S. Pearce, M. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. Wilkinson, "Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguiding applications," Surface and Coatings Technology, vol. 206, no. 23, pp. 4930-4939, 2012.
[54] E. W. Van Stryland, M. Woodall, H. Vanherzeele, and M. Soileau, "Energy band-gap dependence of two-photon absorption," Optics letters, vol. 10, no. 10, pp. 490-492, 1985.
[55] J. J. Low, M. L. Kreider, D. P. Pulsifer, A. S. Jones, and T. H. Gilani, "Band gap energy in silicon," American Journal of Undergraduate Research, vol. 7, no. 1, pp. 27-32, 2008.
[56] J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, "Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures," Applied Physics Letters, vol. 101, no. 4, p. 041905, 2012.
[57] C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, "Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics," New Journal of Physics, vol. 14, no. 9, p. 095014, 2012.
[58] Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, and Y. Ji, "Optical and interfacial layer properties of SiO 2 films deposited on different substrates," Applied optics, vol. 53, no. 4, pp. A83-A87, 2014.
[59] T.-C. Chen, C.-J. Chu, C.-H. Ho, C.-C. Wu, and C.-C. Lee, "Determination of stress-optical and thermal-optical coefficients of Nb 2 O 5 thin film material," Journal of applied physics, vol. 101, no. 4, p. 043513, 2007.
[60] H. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μ m wavelength," Applied Physics Letters, vol. 80, no. 3, pp. 416-418, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code