Responsive image
博碩士論文 etd-0618118-163642 詳細資訊
Title page for etd-0618118-163642
論文名稱
Title
鈦/碳纖維/聚醚醚酮/二氧化矽奈米複材積層板含單邊裂縫之高溫機械與疲勞性質探討
Mechanical and Fatigue Behavior of Single-edge-cracked Titanium/AS-4/PEEK/SiO2 Nanocomposite Laminates at Elevated Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-29
繳交日期
Date of Submission
2018-07-18
關鍵字
Keywords
碳纖維/聚醚醚酮、鈦、奈米粉末、高溫、拉伸、疲勞、單邊傾角裂縫
AS-4/PEEK, Fatigue, Nanocomposite Laminate, Titanium, Tension, Elevated Temperature, Inclined Single-Edged Crack
統計
Statistics
本論文已被瀏覽 5666 次,被下載 146
The thesis/dissertation has been browsed 5666 times, has been downloaded 146 times.
中文摘要
本論文旨在透過拉伸及疲勞實驗探討在相同裂縫長度的單邊裂縫狀況下,鈦/碳纖維/聚醚醚酮/二氧化矽奈米複材積層板於不同裂縫角度及不同環境溫度下的機械性質與抗疲勞性質。
實驗中使用的奈米複材積層板是由外側各一層的鈦金屬板、中間一層以[0° /90° ]s堆疊之碳纖維/聚醚醚酮預浸布(APC-2)及各APC-2間之SiO2 奈米粉所構成之三明治結構。使材料結合前,鈦金屬板欲經過陽極處理使鈦金屬板生成氧化層,以增加與APC-2之黏著力,再將各材料堆疊並利用隔膜成形法進行熱壓過程使各材料結合,結合後切割成規定的大小,並委託工廠以線加工方式切割單邊裂縫,裂縫長度固定為3 mm,而裂縫之角度θ各別為0°、45°與60°,以製成論文中使用之奈米複材積層板。
而實驗中,利用製好不同裂縫角度的奈米複材積層板在環境溫度100°C 、125°C 及150°C 下進行拉伸試驗,藉由獲得的高溫拉伸數據與繪製出負載-位移關係圖以探討積層板的機械性質。並於三種環境溫度中進行疲勞實驗,採用拉伸-拉伸的正弦波型疲勞負載,頻率為5Hz、應力比為0.1的疲勞負載,藉得到之數據整理並繪製成疲勞負載-振次關係圖以探討積層板之抗疲勞特性。藉上述的實驗與整理以歸納出裂縫角度與環境溫度對於奈米複材積層板造成的影響。
整理所有拉伸與疲勞的結果後,可以歸納出以下結論:第一,裂縫角度越大,積層板的極限強度越大,也可承受較多的疲勞負載次數;第二,環境溫度越高,積層板的極限強度則越低,可承受的疲勞負載次數也較少;第三,積層板在相同的裂縫長度時,裂縫角度的影響高於環境溫度的影響;第四,奈米粉末雖可提升積層板的極限強度,但對於抗疲勞性方面則無明顯的提升。
Abstract
The thesis aims to investigate the mechanical properties and fatigue characteristics of inclined single-edge-cracked Titanium/AS-4/PEEK/SiO2 nanocomposite laminates at elevated temperature.
The nanocomposite laminates used was a sandwich structure of cross-ply AS-4/PEEK (APC-2) with SiO2 nano-powder between the titanium sheets. Then they were cut into a predetermined dimensions. Each sample was cut a unilateral crack by wire processing at factory. The length of the crack was fixed at 3 mm, and the inclined angles θ were 0°, 45° and 60°.
In experiments, the tensile tests were carried out at various ambient temperatures of 100°C , 125°C , and 150°C . The fatigue tests were also performed at three ambient temperatures of 100°C , 125°C , and 150°C . The constant stress amplitude tension-tension cyclic tests were carried out by using load-control mode at sinusoidal loading wave with frequency of 5 Hz and the stress ratio of 0.1.
After finishing all tensile and fatigue tests, we obtain the results as the greater the angle of cracks, the greater the ultimate strength of the laminate, and can also withstand more resistance to fatigue load. Second, the higher the ambient temperature is, the lower the ultimate strength of laminates is, and the less the fatigue life is. Third, the effect of crack angle on strength and fatigue life is higher than that of ambient temperature. Fourth, the nano-powder can increase the ultimate strength of laminates, but doesn’t have significant improvement in fatigue resistance.
目次 Table of Contents
論文審定書 i
誌  謝 ii
摘  要 iii
ABSTRACT iv
目  錄 v
圖  次 viii
表  次 xii
第一章 緒論 1
1-1 前言 1
1-2 奈米複合材料概述 1
1-3 研究方向 2
1-4 文獻回顧 2
1-5 組織與章節 4
第二章 研製與實驗 5
2-1 實驗材料 5
2-1-1 鈦金屬 Titanium 5
2-1-2 碳纖維/聚醚醚酮預浸布 AS-4/PEEK 5
2-1-3 二氧化矽("SiO2" )奈米微粒 6
2-2 儀器設備介紹 6
2-3 鈦/碳纖維/聚醚醚酮/二氧化矽 奈米複材積層板之製程 7
2-3-1 鈦之前處理 7
2-3-2 APC-2之前處理 8
2-3-3 高溫高壓製程 9
2-3-4 試片切割與加工 10
2-4 拉伸與疲勞試驗 10
2-4-1 高溫拉伸試驗 10
2-4-2 高溫疲勞試驗 11
第三章 拉伸試驗結果 14
3-1 拉伸積層板命名 14
3-2 拉伸結果 14
第四章 疲勞試驗結果 31
4-1 疲勞積層板命名 31
4-2 疲勞結果 31
第五章 分析與討論 48
5-1 Ti/APC-2/"SiO2" 奈米複材積層板機械性質之預測與比較 48
5-1-1 混合理論 48
5-1-2 混合理論與平板奈米複材積層板實驗值比較 49
5-1-3 含傾斜裂縫之奈米複材積層板極限負載預測與比較 49
5-1-4 破壞力學理論K值 49
5-2 Ti/APC-2/"SiO2" 奈米複材積層板之極限強度探討 51
5-2-1 裂縫角度對極限強度的影響 51
5-2-2 溫度效應對極限強度的影響 52
5-2-3 裂縫角度與溫度效應的比較 52
5-2-4 奈米粉末對極限強度的影響 52
5-3 Ti/APC-2/"SiO2" 奈米複材積層板之抗疲勞性探討 53
5-3-1 裂縫角度對抗疲勞性的影響 53
5-3-2 溫度效應對抗疲勞性的影響 53
5-3-3 奈米粉末對抗疲勞性的影響 53
5-4 Ti/APC-2/"SiO2" 奈米複材積層板之破壞模式探討 54
5-4-1 拉伸破壞 54
5-4-2 疲勞破壞 54
第六章 結論 72
參考文獻 74
附錄一 材料性質 77
附錄二 儀器設備 81
參考文獻 References
[1] Erdogan, F. and Sih, G. C. “On the Crack Extension in Plates Under Plane Loading and Transverse Shear.” Transactions of the ASME, Journal of Basic Engineering 85 (1963): 519-527.
[2] Wu, H. C. “Dual Failure Criterion for Plane Concrete.” Journal of Engineering Mechanics Division 100 (1974): 1167-1181.
[3] Maiti, S. K. Unstable Edge Crack Extensions During Shearing of Bars. Diss. Indian Institute of Technology, 1979.
[4] Maiti, S. K. “Prediction of the Path of Unstable Extension of Internal and Edge Cracks.” Journal of Strain Analysis 15 (1980): 183-194.
[5] Chang, K. J. “On the Maximum Strain Criterion-A New Approach to the Angled Crack Problem.” Engineering Fracture Mechanics 14(1981): 107-124.
[6] Sih, G. C. “Some Basic Problems in Fracture Mechanics and New Concepts” Engineering Fracture Mechanics 5 (1973): 365-377.
[7] Nuismer, R. J. ‘‘An Energy Release Rate Criterion for Mixed Mode Fracture.’’ International Journal of Fracture 11 (1975): 245-250.
[8] Palaniswamy, K. and Knauss, W. G. “Propagation of a Crack under General In-Plane Tension.” International Journal of Fracture 8 (1972): 114-117.
[9] Hussain, M. A., Pu, S. L., and Underwood, J. “Strain Energy Release Rate for a Crack under Combined Mode I and II.” Fracture Analysis, ASTM STP 560 (1974): 2.
[10] Packman, P. F. ‘‘The Role of Interferometry in Fracture Studies.’’ Experimental Techniques in Fracture Mechanics 2 (1975): 59-87.
[11] Smith, C. W. ‘‘Use of Three-Dimensional Photoelasticity and Progress in Related Areas.’’ Experimental Techniques in Fracture Mechanics 2 (1975): 3-58.
[12] Krishnakumar, S. “Fiber metal laminates: the synthesis of metals and composites.” Materials and Manufacturing Processes 9 (1994): 295-354.
[13] Cortés, P. and Cantwell, W. J. “Fracture properties of a fiber-metal laminates based on magnesium alloy.” Journal of Materials Science 39 (2004): 1081-1083.
[14] Marissen, R. ‘‘Flight Simulation Behavior of Aramid Reinforced Aluminum Laminates (ARALL).’’ Engineering Fracture Mechanics 19. 2 (1984): 261-277.
[15] Marissen, R. “Fatigue Mechanisms in ARALL, A Fatigue Resistant Hybrid Aluminum Aramid Composite Material.” Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds 3 (1987): 1271-1279.
[16] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H. ‘‘Micocrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)’’, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (1984): 1081-1089.
[17] Vlot, Ad and Gunnink J. W., eds. Fibre metal laminates : an introduction. Boston: Kluwer Academic Publishers, 2001.
[18] Ritchie, R. O., Yu, W. and Bucci, R. J. “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging.” Engineering Fracture Mechanic 32. 3 (1989): 361-377.
[19] Reyes, G. Processing and characterization of the mechanical properties of novel fiber-metal laminates. Diss. University of Liverpool, 2002.
[20] 李秉原,鎂合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討,國立中山大學機械與機電工程研究所碩士論文,2006。
[21] 劉俊吾,鈦合金/碳纖維/聚醚醚酮複材積層板之研製與機械性值探討,國立中山大學機械與機電工程研究所碩士論文,2009。
[22] Li, E. and Johnson W. S. “An investigation into fatigue of a hybrid titanium composite laminate.” Journal of Composite Technology and Research 20 (1998): 3-12.
[23] Cortes, P. and Cantwell, W. J. “The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber–metal laminates”, Journal of Reinforced Plastics and Composites 23 (2004): 1615-1623.
[24] 張哲愷,鈦合金/聚醚醚酮奈米複材積層板之研製與機械性質探討,國立中山大學機械與機電工程研究所碩士論文,2010。
[25] 陳怡菁,含單邊裂縫之鈦/碳纖維/聚醚醚酮複材積層板於高溫下之機械性質與疲勞破壞,國立中山大學機械與機電工程研究所碩士論文,2018。
[26] 張哲愷,含裂縫之鈦/碳纖維/聚醚醚酮混合複材積層板之機械行為與疲勞響應,國立中山大學機械與機電工程研究所博士論文,2018。
[27] Anderson TL. Fracture Mechanics: Fundamwntals and Applications. Third ed. Florida: CRC Press, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code