Responsive image
博碩士論文 etd-0618118-230137 詳細資訊
Title page for etd-0618118-230137
論文名稱
Title
含有環氧基材的偶氮苯全像材料之合成及其光學特性
Synthesis of Holographic Materials Based on Azobenzene –containing Epoxy and Its Optical Characterization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-22
繳交日期
Date of Submission
2018-07-18
關鍵字
Keywords
偶氮苯、全像材料、表面起伏光柵、環氧基材、鍵結程度
Epoxy, Holography, Surface relief gratings, Holographic materials, Azobenzene
統計
Statistics
本論文已被瀏覽 5625 次,被下載 0
The thesis/dissertation has been browsed 5625 times, has been downloaded 0 times.
中文摘要
本研究利用溶膠-凝膠法,製備具有重複讀寫且快速寫入的偶氮苯全像材料,
可用於光學儲存、光學顯示等應用。溶膠-凝膠基材因為穩定性高且機械性質佳,
而有機基材受光照射後光柵會收縮,使其穩定性較差,所以本研究利用(4-
Aminoazobenzene, AAB)為偶氮苯感光單體,再選用 3-縮水甘油醚氧基丙基三甲氧
基矽烷((3-Glycidyloxypropyl)trimethoxysilane, GPTMS)為溶膠-凝膠基材與偶氮苯
進行開環反應形成共價鍵鍵結,藉由雷射光的同調性使偶氮苯分子進行可逆的順-
反式光異構化反應,製備出具有重複寫入能力的偶氮苯全像材料。
首先 AAB 與 GPTMS 製備偶氮苯全像材料,利用溶膠-凝膠法反應下的時間與
環境溫度為參數,探討偶氮苯全像材料在不同交聯程度下與開環程度所造成的繞
射效率之影響。
透過傅立葉轉換紅外光譜(FTIR)與核磁共振儀(NMR)可確認 AAB 與 GPTMS
形成共價鍵鍵結,再利用 FTIR 做定量分析可確認材料的鍵結率,藉由參數的變化
來調整鍵結率,製備出反應快速的偶氮苯全像材料。在固定反應溫度 60°C 下反應
8 小時,在 34 分鐘有最大繞射效率 34.11%;固定反應時間 4 小時加熱 80°C,在
31 分鐘有最大繞射效率 30.16%。藉由參數的趨勢來找出偶氮苯全像材料之最佳參
數,在反應溫度 65°C 下反應 8 小時,15 分鐘內達到 30.87%最大繞射效率;將樣
品濃度提高兩倍,反應溫度 80°C 下反應 8 小時,在 18 分鐘內達到最大繞射效率
30.01%。
Abstract
Azobenzene molecules exhibit numerous photoresponsive features and the irradia-
tion of azobenzenes with polarized light results in a fast and efficient photoselective isom-
erization,accompanied by a chromophore motion and alignment.An azo chromophore (4-
Aminoazobenzene, AAB) was selected as the photosensitive monomer.The functional
epoxy used was ((3-Glycidyloxypropyl)trimethoxysilane, GPTMS).We have used ring
opening reaction of GPTMS,AAB was employed instead of the component providing for
the ring opening,whereas AAB become covalently bonded to GPTMS.
In this study, We found that the reaction time of the Sol-Gel process played an key
role to influence cross-linking degree of the GPTMS. Meanwhile, the reaction tempera-
ture might change the degree of bonding between AAB and GPTMS (AG).The main goal
is to achieve the efficient formation of (surface relief gratings, SRGs) and efficient Dif-
fraction Efficiency.
We found the optimal parameters to produce azobenzene holographic materials with
efficient formation of SRGs and efficient Diffraction Efficiency.The Diffraction Effi-
ciency of the composites AG was 30.87% and it could be achieved in 15 minutes. From
the data measurement by Atom Force microscopy (AFM), it revealed the SRGs depth of
AG were 40.8 nm.
目次 Table of Contents
論文審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 前言1
1.2 全像術 2
1.3 光柵 3
1.3.1 體積光柵 4
1.3.2 薄光柵 5
1.4 繞射效率 5
1.5 全像儲存技術 6
1.6 全像儲存材料種類 7
1.6.1 鹵化銀材料(Silver halide emulsion) 7
1.6.2 重鉻酸鹽明膠(Dichromated Gelatin, DCG) 7
1.6.3 光折變材料(Photorefractive Crystal) 7
1.6.4 感光類材料(Photographic material) 8
第二章 原理與文獻回顧 10
2.1 偶氮苯全像材料文獻回顧 10
2.2 偶氮苯化合物的光學性質 14
2.2.1 光致變色反應 14
2.2.2 順反異構型態 15
2.2.3 表面起伏光柵(Surface Relief rating) 16
2.3 環氧乙烷 17
2.3.1 環氧乙烷之硬化反應 17
2.4 溶膠-凝膠法(Sol-Gel) 19
2.4.1 反應機制 19
2.4.2 控制變因 20
第三章 研究方法 23
3.1 研究動機與目的 23
3.2 實驗藥品及材料 25
3.2.1 樣品代號 26
3.3 實驗流程 26
3.3.1 材料 AG-nh 製程 26
3.3.2 材料 AG-m°C 製程 28
3.4 實驗儀器及分析方法 30
3.4.1 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer,
FTIR) 30
3.4.2 核磁共振光譜儀(Nuclear Magnetic Resonance Spectroscopy, NMR) 30
3.4.3 光功率計(Power Meter) 30
3.4.3 旋轉塗佈機(Spin Coater) 31
3.4.4 三維輪廓儀(Alpha-step Profilometer) 31
3.4.5 原子力顯微鏡(Atomic Force Microscopy, AFM) 31
3.5 全像干涉實驗 31
3.5.1 實驗設備 31
3.5.2 全像記錄與讀取 32
第四章 結果與討論 34
4.1 材料的合成鑑定分析 34
4.1.1 核磁共振光譜儀分析(NMR) 34
4.1.2 傅立葉轉換紅外光光譜儀(FTIR) 37
4.1.3 三維輪廓儀分析(Alpha-step) 44
4.2 光學特性 49
4.2.1 Sol-Gel 基材 AG 之繞射效率 49
4.2.2 原子力顯微鏡分析(AFM) 59
4.2.3 光學特性綜合討論 68
4.3 全像材料 AG 之最佳參數 70
4.3.1 材料 AG-8h-65°C 70
4.3.2 材料 AG-9h-65°C 73
4.3.3 材料 AG-8h-80°C 76
4.4 厚度效應 79
4.5 實驗室團隊歷年研究綜合比較 84
第五章 結論 85
第六章 建議未來工作 86
參考文獻 87
參考文獻 References
1. Bruder, F. K.; Hagen, R.; Rolle, T.; Weiser, M. S.; Facke, T., From the Surface to
Volume: Concepts for the Next Generation of Optical-Holographic Data-Storage
Materials. Angew. Chem.-Int. Edit. 2011, 50 (20), 4552-4573.
2. Ashley, J.; Bernal, M.-P.; Burr, G. W.; Coufal, H.; Guenther, H.; Hoffnagle, J. A.;
Jefferson, C. M.; Marcus, B.; Macfarlane, R. M.; Shelby, R. M., Holographic data
storage technology. IBM journal of research and development 2000, 44 (3), 341-368.
3. Staebler, D.; Burke, W.; Phillips, W.; Amodei, J., Multiple storage and erasure of
fixed holograms in Fe− doped LiNbO3. Applied Physics Letters 1975, 26 (4), 182-184.
4. Ford, J. E.; Fainman, Y.; Lee, S. H., Array interconnection by phase-coded optical
correlation. Optics letters 1990, 15 (19), 1088-1090.
5. Francis, T.; Wu, S.; Mayers, A. W.; Rajan, S., Wavelength multiplexed reflection
matched spatial filters using LiNbO3. Optics communications 1991, 81 (6), 343-347.
6. Gabor, D., A new microscopic principle. Nature 1948, 161 (4098), 777-778.
7. Klein, W.; Cook, B. D., Unified approach to ultrasonic light diffraction. IEEE
Transactions on sonics and ultrasonics 1967, 14 (3), 123-134.
8. Kogelnik, H., Coupled wave theory for thick hologram gratings. Bell Labs
Technical Journal 1969, 48 (9), 2909-2947.
9. Mehta, P. C.; Rampal, V., Lasers and holography. World Scientific: 1993,272-273.
10. Burr, G. W.; Coufal, H.; Hoffnagle, J. A.; Jefferson, C. M.; Jurich, M.; Marcus, B.;
Macfarlane, R. M.; Shelby, R. M., Optical data storage enters a new dimension. Physics
World 2000, 13 (7), 37.
11. Graver, W. R.; Gladden, J. W.; Eastes, J. W., Phase holograms formed by silver
halide (sensitized) gelatin processing. Applied optics 1980, 19 (9), 1529-1536.
12. Chang, B., Dichromated gelatin holograms and their applications. Optical
Engineering 1980, 19 (5), 195642.
13. Saleh, B. E.; Teich, M. C.; Saleh, B. E., Fundamentals of photonics. Wiley New
York: 1991, 696-736.
14. Smirnova, T.; Sakhno, O.; Strelets, I.; Tikhonov, E., Temperature stability and
radiation resistance of holographic gratings on photopolymer materials. Technical
Physics 1998, 43 (6), 708-713.
15. Bobrovsky, A.; Shibaev, V.; Wendorff, J., Comparative study of holographic
recording in cholesteric and nematic azo‐containing side‐chain polymers. Liquid
Crystals 2007, 34 (1), 1-7.
16. Manivannan, G.; Lemelin, G.; Changkakoti, R.; Lessard, R. A., Computer-
generated holograms on a metal ion-doped polymer system: contact copying. Applied
optics 1994, 33 (16), 3478-3481.
17. Goldenberg, L. M.; Kulikovska, O.; Stumpe, J., Thermally stable holographic
surface relief gratings and switchable optical anisotropy in films of an azobenzene-
containing polyelectrolyte. Langmuir 2005, 21 (11), 4794-4796.
18. Serwadczak, M.; Kucharski, S., Photochromic gratings in sol-gel hybrid materials
containing cyanoazobenzene chromophores. Journal of sol-gel science and technology
2006, 37 (1), 57-62.
19. Gao, J.; He, Y.; Liu, F.; Zhang, X.; Wang, Z.; Wang, X., Azobenzene-containing
supramolecular side-chain polymer films for laser-induced surface relief gratings.
Chemistry of materials 2007, 19 (16), 3877-3881.
20. Oliveira, O. N.; dos Santos, D. S.; Balogh, D. T.; Zucolotto, V.; Mendonça, C. R.,
Optical storage and surface-relief gratings in azobenzene-containing nanostructured
films. Advances in colloid and interface science 2005, 116 (1), 179-192.
21. Kuo, C.-T.; Huang, S.-Y., Enhancement of diffraction of dye-doped polymer film
assisted with nematic liquid crystals. Applied physics letters 2006, 89 (11), 111109.
22. Gao, J.; He, Y.; Xu, H.; Song, B.; Zhang, X.; Wang, Z.; Wang, X., Azobenzene-
containing supramolecular polymer films for laser-induced surface relief gratings.
Chemistry of materials 2007, 19 (1), 14-17.
23. He, T.; Cheng, Y.; Du, Y.; Mo, Y., Z-scan determination of third-order nonlinear
optical nonlinearity of three azobenzenes doped polymer films. Optics communications
2007, 275 (1), 240-244.
24. Kulikovsky, L.; Kulikovska, O.; Goldenberg, L. M.; Stumpe, J., Phenomenology of
Photoinduced Processes in the Ionic Sol-Gel-Based Azobenzene Materials. ACS Appl.
Mater. Interfaces 2009, 1 (8), 1739-1746.
25. Priimagi, A.; Lindfors, K.; Kaivola, M.; Rochon, P., Efficient Surface-Relief
Gratings in Hydrogen-Bonded Polymer− Azobenzene Complexes. ACS Appl. Mater.
Interfaces 2009, 1 (6), 1183-1189.
26. Goldenberg, L. M.; Kulikovsky, L.; Kulikovska, O.; Stumpe, J., Extremely high
patterning efficiency in easily made azobenzene-containing polymer films. J. Mater.
Chem. 2009, 19 (34), 6103-6105.
27. Goldenberg, L. M.; Kulikovsky, L.; Gritsai, Y.; Kulikovska, O.; Tomczyk, J.;
Stumpe, J., Very efficient surface relief holographic materials based on azobenzene-
containing epoxy resins cured in films. J. Mater. Chem. 2010, 20 (41), 9161-9171.
28. Orofino, A. B.; Arenas, G.; Zucchi, I.; Galante, M. J.; Oyanguren, P. A., A simple
strategy to generate light-responsive azobenzene-containing epoxy networks. Polymer
2013, 54 (22), 6184-6190.
29. Tseng, Y.-P., Synthesis of Azobenzene-Based Composites and Its Optical
Characterization. Master Thesis,National Sun Yat-Sen University 2014, 1-83.
30. Kirby, R.; Sabat, R. G.; Nunzi, J.-M.; Lebel, O., Disperse and disordered: a
mexylaminotriazine-substituted azobenzene derivative with superior glass and surface
relief grating formation. Journal of Materials Chemistry C 2014, 2 (5), 841-847.
31. Wang, L.-Y., Synthesis and Characterization of Azobenzene with BAA, PPI, or
TPGA for Holographic Storage. Master Thesis,National Sun Yat-Sen University 2015, 1-
76.
32. Lan, W.-l., Matrix Effect of Azobenzene-based Holographic Storage Materials.
Master Thesis,National Sun Yat-Sen University 2016, 1-75.
33. Weng, K.-J., Effect of Matrix Structure on the Holographic Storage Efficiency of
Azobenzene based Composites. Master Thesis,National Sun Yat-Sen University 2017, 1-
52.
34. Bouas-Laurent, H.; Dürr, H., Organic photochromism (IUPAC technical report).
Pure and Applied Chemistry 2001, 73 (4), 639-665.
35. Priimägi, A., Polymer-azobenzene complexes: from supramolecular concepts to
efficient photoresponsive polymers. Doctor Dissertation,Helsinki University of
Technology 2009, 1-42.
36. Priimagi, A.; Shevchenko, A., Azopolymer‐based micro‐and nanopatterning for
photonic applications. Journal of Polymer Science Part B: Polymer Physics 2014, 52
(3), 163-182.
37. Yager, K. G.; Barrett, C. J., All-optical patterning of azo polymer films. Current
opinion in solid state and materials science 2001, 5 (6), 487-494.
38. May, C.,Chapter 1 - Introduction to Epoxy Resin. Epoxy resins: chemistry and
technology. CRC press: 1987, 1-8.
39. Khosravi, H.; Eslami-Farsani, R., Enhanced mechanical properties of
unidirectional basalt fiber/epoxy composites using silane-modified Na+-
montmorillonite nanoclay. Polym. Test 2016, 55, 135-142.
40. Brinker, C.; Scherer, G.,Chapter 3 - Hydrolysis and condensation II: silicates Sol-
Gel Science, Academic Press, New York: 1990, 96-233.
41. Iler, R. K., The colloid chemistry of silica and silicates. LWW: 1955, 1-86.
42. Klein, L., Sol-gel processing of silicates. Annual Review of Materials Science
1985, 15 (1), 227-248.
43. Lee, F.-Y., Synthesis and Characterization of Different-bonding Azobenzene-Based
Holographic Storage Materials by Sol-Gel Process. Master Thesis,National Sun Yat-Sen
University 2017, 1-80.
44. Plutino, M. R.; Guido, E.; Colleoni, C.; Rosace, G., Effect of GPTMS
functionalization on the improvement of the pH-sensitive methyl red photostability.
Sensors and Actuators B: Chemical 2017, 238, 281-291.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code