Responsive image
博碩士論文 etd-0619101-183530 詳細資訊
Title page for etd-0619101-183530
論文名稱
Title
單級高功因降升壓式電子安定器
Single-stage high-power-factor electronic ballasts with buck-boost topology for fluorescent lamps
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-05-28
繳交日期
Date of Submission
2001-06-19
關鍵字
Keywords
功因修正、對稱脈波寬度調變、螢光燈、非對稱脈波寬度調變、電子安定器
power-factor-correction, symmetrical pulse-width-modulation (SPWM), asymmetrical pulse-width-modulation (APWM), Fluorescent lamp, electronic ballast
統計
Statistics
本論文已被瀏覽 5700 次,被下載 8341
The thesis/dissertation has been browsed 5700 times, has been downloaded 8341 times.
中文摘要
為了實現高功因、低電流諧波、高效率與低成本之螢光燈電子安定器,本文提出三種新型的單級高功因電子安定器,應用於螢光燈管,分別為:(1)單級非對稱結構之高功因電子安定器、(2)單級對稱結構之高功因電子安定器、(3)單級單切換開關之高功因電子安定器。電子安定器以D類或E類共振換流器為螢光燈的驅動電路;以降升壓轉換器作為功因修正電路。經由整合降升壓轉換電路與共振換流器的主動開關,得到單級結構之安定器電路,具有構造簡單、元件數目少、效率高與低成本等優點。
針對單級非對稱結構之高功因電子安定器,採取非對稱脈波寬度調變的控制方式,驅動T8-36W快速啟動型螢光燈,兩個主動開關分別工作於零電壓與零電流切換導通;而單級對稱結構之高功因電子安定器,則採取對稱脈波寬度調變的控制方式,驅動兩支串聯的T9-40W快速啟動型螢光燈,兩個主動開關均具有零電壓切換導通的優點,且有相同的電流,效率更高;單級單切換開關之高功因電子安定器,以脈波寬度調變的方式控制唯一的主動開關,驅動PL-27W小型螢光燈,透過適當參數設計使主動開關能於零電流切換導通,以維持電路高效率。固定主動開關的切換頻率與責任週期,並設計降升壓轉換器工作於不連續電流模式,可以獲得高功率因數。
本文根據開關導通情形建立電路的工作模式,分析電路工作原理。為簡化分析,應用基本波近似法與螢光燈的等效電阻模型,建立等效電路,以此等效電路為基礎推導電路參數的設計方程式及設計流程。最後,以電腦模擬與實際電路量測作理論驗證。實驗的結果相當令人滿意,其功率因數均高於0.99;電流總諧波失真10%以下;電路效率高達85%以上。
Abstract
Three novel single-stage electronic ballasts with the advantages of high-power-factor, low current harmonic, high efficiency, and low cost are proposed for rapid-start fluorescent lamps. Included are (1) single-stage high-power-factor electronic ballast with asymmetrical topology, (2) single-stage high- power-factor electronic ballast with symmetrical topology, and (3) single-stage single-switch high-power-factor electronic ballast. The circuit configurations are obtained by integrating the buck-boost power-factor-correction converter into the Class D or the Class E resonant inverter. With simple circuit configuration and less component count, desired circuit performances of high-power-factor and high efficiency are realized.
The control methods of pulse-width-modulation (PWM) with asymmetrical and symmetrical approaches are utilized for the three presented ballasts. The buck-boost conversion stage is operated at discontinuous current mode (DCM) to achieve nearly unity power factor at a fixed switching frequency. With carefully designed circuit parameters, the power switches can exhibit either zero-voltage switching-on (ZVS) or zero-current switching-on (ZCS). As a result, high circuit efficiency can be ensured.
Design equations are derived and computer analyses are performed based on the lamp’s equivalent resistance model and fundamental approximation. Accordingly, design guidelines for determining circuit parameters are provided. Prototypes of the three proposed circuits designed for a T8-36W lamp, two series-connected T9-40W lamps and a PL-27W lamp are built and tested to verify the computer simulations and analytical predictions.
目次 Table of Contents
目 錄

中文摘要 I
英文摘要 III
目錄 V
圖表目錄 IX
第一章 簡介 1
1-1 研究動機 1
1-1-1 螢光燈管 1
1-1-2 電磁耦合式安定器與電子安定器 2
1-1-3 功因修正電路 3
1-1-4 單級高功因電子式安定器 5
1-2本文大綱 6
第二章 降升壓式雙級高功因電子安定器 8
2-1 功因修正電路 8
2-1-1 電路架構 8
2-1-2 降升壓式之功因修正電路分析 11
2-2 共振換流器 14
2-2-1 D類共振換流器 14
2-2-2 E類共振換流器 19
第三章 燈管負載之共振式電子安定器 26
3-1 等效燈管電阻模型 26
3-1-1 燈管電弧特性方程式 28
3-2 串並聯共振換流器 28
3-2-1 等效電路 29
3-2-2 燈管啟動電壓 32
3-2-3 燈絲功率 33
3-2-4 串聯共振電路(Ls, Cs) 34
3-2-5 輸入阻抗、輸入電流與品質因數 34
第四章 單級非對稱結構之高功因電子安定器 36
4-1 電路架構 36
4-2 工作原理 39
4-2-1 電路工作模式 40
4-2-2 工作模式綜合分析 44
4-3 電路特性分析 45
4-3-1 降升壓轉換器 45
4-3-2共振式換流器 46
4-3-2-1 等效電路 46
4-3-2-2 零電壓/零電流導通 47
4-4 電路參數設計 49
4-4-1 降升壓轉換器電感 49
4-4-2 並聯電容Cf 50
4-4-3 直流鏈電壓Vdc、串聯電感Ls與串聯電容Cs 50
4-4-3-1 不連續電流模式(DCM) 50
4-4-3-2 零電壓/零電流導通(ZVS/ZCS) 51
4-5 電腦模擬 54
4-6 實驗量測 56
4-6-1 控制電路 56
4-6-2 實測結果 59
第五章 單級對稱結構之高功因電子安定器 63
5-1 電路架構推導與整合 63
5-2 工作原理 66
5-2-1 控制電路 66
5-2-2 電路工作模式 67
5-3 電路分析 74
5-3-1 降升壓轉換器 74
5-3-2共振換流器 75
5-4 電路參數設計 79
5-5 電腦模擬 80
5-6 實驗量測 82
5-6-1 控制電路 82
5-6-2 實測結果 83
第六章 單級單切換開關之高功因電子安定器 87
6-1 電路架構 87
6-2 電路工作原理 89
6-2-1 控制電路 90
6-2-2 電路工作模式 90
6-3 E類共振換流器電路分析 97
6-3-1 E類共振換流器之等效電路 98
6-3-2 最佳化工作電路分析 100
6-4電路參數設計 106
6-5電腦模擬 110
6-6 實驗量測 112
6-6-1 控制電路 112
6-6-2 實測結果 112
第七章 結論與未來研究方向 115
參考文獻 118
參考文獻 References
[1] IEC Lighting Handbook, Reference and Application, Illuminating Engineering Society of North America, 1993.
[2] American Nation Standards for Fluorescent Lamp-Rapid-Start Types-Dimensional and Electrical Characteristics, American National Standards Institute, Inc.
[3] E. E. Hammer, “Fluorescent Lamp Starting Voltage Relationships at 60Hz and High Frequency,” Journal of the Illuminating Engineering Society, PP. 36-46, Oct. 1983.
[4] E. E. Hammer, “High Frequency Characteristics of Fluorescent Lamps up to 500 kHz,” Journal of the Illuminating Engineering Society, pp. 52-61, Winter 1987.
[5] E. E. Hammer and T.K. McGowan, “Characteristics of Various F40 Fluorescent Systems at 60 Hz and High Frequency,” IEEE Transactions on Industry Applications, Vol. IA-21, No. 1, pp. 11-16, Jan./Feb. 1985.
[6] W. R. Alling, “Important Design Parameters for Solid-State Ballasts,” IEEE Transactions on Industry Applications, Vol. 25 No. 2, pp. 203-207, March/April 1989.
[7] M. K. Kazimierczuk and W. Szaraniev, “Electronic Ballast for Fluorescent Lamps,” IEEE Transactions on power Electronics, Vol. 8, No. 4, pp. 386-395, Oct. 1993.
[8] M. Gulko and S. B. Yaakov, “Current-Sourcing Push-Pull Parallel-Resonance Inverter (CS-PPRL): Theory and Application as a Discharge Lamp Driver,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 3, pp. 285-291, June 1994.
[9] M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics,' Vol. 41, No. 4, pp. 418-425, Aug. 1994.
[10] T. F. Wu, Y. C. Liu, and Y. J. Wu, “High-Efficiency Low-Stress Electronic Dimming Ballast for Multiple Fluorescent Lamps,” IEEE Transactions on Power Electronics, Vol. 14, No. 1, pp. 160-166, Jan. 1999.
[11] C. S. Moo, H. L. Cheng, H. N. Chen, and H. C. Yen “Designing Dimmable Electronic Ballast with Frequency Control,” IEEE Applied Power Electronics Conference, pp. 727-733, 1999.
[12] M. Ponce, J. Arau, J. M. Alonso, and M. Rico-Secades, “Electronic Ballast Based on Class E Amplifier with a Capacitive Inverter and Dimming for Photovoltaic Applications,” IEEE Industrial Applications Society Annual Meeting, pp. 1156-1162, 1998.
[13] C. S. Moo, C. R. Lee, and Y. C. Chung, “A Protection Circuit for Electronic Ballasts with Self-Excited Series-Load Resonant Inverter,” IEEE Conference on Industrial Electronics, Control and Instrumentation, pp. 1116-1121, 1996.
[14] Y. R. Yang and C. L. Chen, “A Self-Excited Half-Bridge Series-Resonant Ballast with Automatic Input Current Shaping, “IEEE Power Electronics Specialists Conference, pp. 881-886, 1996.
[15] T. H. Yu, H. M. Huang, and T. F. Wu, “Self Excited Half-Bridge Series Resonant Parallel Loaded Fluorescent Lamp Electronic Ballasts,” IEEE Applied Power Electronic Conference, pp. 657-664, 1995.
[16] J. Adams, T. J. Ribarich, and J. Ribarich, “A New Control IC for Dimmable High-Frequency Electronic Ballasts,” IEEE Applied Power Electronics Conference, pp. 713-719, 1999.
[17] Philips Semiconductors, “UBA2021 570V Drive IC for CFL and TL Lamps,” Application Note AN98099, 1998.
[18] J. S. Subjak and J. S. Mcquilkin, “Harmonics-Causes, Effects, Measurements, and Analysis: An Update,” IEEE Transactions on Industry Applications, Vol. 26, No. 6, pp. 1034-1042, Nov./Dec. 1990.
[19] R. P. Stratford, “Harmonic Pollution on Power Systems-A Change in Philosophy,” IEEE Transactions on Industry Applications, Vol. 16, No. 5, Sep./Oct. 1980.
[20] R. P. Verderber, O. C. Morse, and W. R. Alling, “Harmonics from Compact Fluorescent Lamps,” IEEE Industrial Applications Society Annual Meeting, pp. 1853-1858, 1991.
[21] R. Arseneau and M. Ouellette, “The Effects of Supply Harmonics on the Performance of Compact Fluorescent Lamps,” IEEE Transactions on Power Delivery, Vol. 8, No. 2, pp. 473-479, April 1993.
[22] M. E. Amoli and T. Florence, “Power Factor and Harmonic Distortion Characteristics of Energy Efficient Lamps,” IEEE Transactions on Power Delivery, Vol. 4, No. 3, pp. 1965-1969, July 1989.
[23] R. Christiansen, “Effect of High Levels of Harmonics from Lighting Equipment and System,” IEEE Industrial Applications Society Annual Meeting, pp. 1859-1862, 1991.
[24] S. Datta, “Power Pollution Cased by Lighting Control System,” IEEE Industrial Applications Society Annual Meeting, pp. 1842-1852, 1991.
[25] A. R. Prasad, P. D. Ziogas, and S. Manlas, “A Novel Passive Waveshaping Method for Single-Phase Diode Rectifiers,” IEEE Transactions on Industrial Electronics, Vol. IE-37, No. 6, pp. 521-530, Dec. 1990.
[26] C. S. Moo, H. L. Cheng, and S, J. Guo, “Designing Passive LC Filters with Contour Maps,” International Conference on Power Electronics and Drive Systems, pp. 834-838, 1997.
[27] M. H. Kheraluwala and S. A. Hamamsy, “Modified Valley Fill High Power Factor Electronic Ballast for Compact Fluorescent Lamps,” IEEE Power Electronics Specialists Conference, pp. 10-14, 1995.
[28] S. Y. Chan, D. Y. Guo, and C. S. Moo, “Analysis and Design of Valley-Fill Filter,” Proceedings of the 18th Symposium on Electrical Power Engineering, pp.600-604, 1997.
[29] M. Kazerani, P. D. Ziogas, and G. Joos, “A Novel Active Current Waveshaping Technique for Solid-State Input Power Factor Conditioners,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 1, pp. 72-78, Feb. 1991.
[30] V. J. Thottuvelil, D. Chin, and G. C. Verghese, “Hierarchical Approaches to Modeling High-Power-Factor AC-DC Converters,” IEEE Transactions on Power Electronics, Vol. 6, No. 2, pp. 179-187, April 1991.
[31] Z. Lai and K. M. Smedley, “A Family of Continuous-Conduction-Mode Power-Factor-Correction Controllers Based on the General Pulse-Width Modulator,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 501-510, May 1998.
[32] A. F. de Souza and I. Barbi, “A New ZVS Semiresonant High Power Factor Rectifier with Reduced Conduction Losses,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 1, pp. 82-90, Feb. 1999.
[33] H. Endo, T. Yamashita, and T. Sugiura, “A High-Power-Factor Buck Converter,” Conference Record of IEEE Power Electronics Specialists Conference, pp. 1071-1076, 1992.
[34] J. C. Salmon, “Techniques for Minimizing the Input Current Distortion of Current-Controlled Single-Phase Boost Rectifiers,” IEEE Transactions Power Electron., Vol. 8, No. 4, pp. 509-520, Oct. 1993.
[35] C. Zhou, R. B. Ridley, and F. C. Lee, “Design and Analysis of a Hysteretic Boost Power Factor Correction Circuit,” IEEE Power Electronics Specialist Conference, pp. 800-807, 1990.
[36] K. H. Liu and Y. L. Lin, “Current Waveform Distortion in Power Factor Correction Circuits Employing Discontinuous-Mode Boost Converters,” IEEE Power Electronics Specialists Conference, pp. 825-829, 1989.
[37] L. Huber and M. M. Jovanovic, “Design-Oriented Analysis and Performance Evaluation of Clamped-Current-Boost Input-Current Shaper for Universal-Input-Voltage Range,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 528-537, May 1998.
[38] A. R. Prasad, P. D. Ziogas, and S. Manias, “A New Active Power Factor Correction Method for Single-Phase Buck-Boost AC-DC Converter,” Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, pp. 814-820, 1992.
[39] M. A. de Rooij, J. A. Ferreira, and J. D. van Wyk, “A Novel Unity Power Factor Low-EMI Uninterruptible Power Supply,” IEEE Transactions on Industry Applications, Vol. 34, No. 4, pp. 870-877, July/Aug. 1998.
[40] R. Srinivasan and R. Oruganti, “A Unity Power Factor Converter Using Half-Bridge Boost Topology,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, pp. 487-500, May 1998.
[41] C. S. Moo, Y. C. Chuang, and J. C. Lee, “A New Dynamic Filter for The Electronic Ballast with the Parallel-Load Resonant Inverter,” IEEE Industry Applications Society Annual meeting, pp. 2597-2601, 1995.
[42] C. S. Moo, Y. C. Chuang, and C. R. Lee, “A New Power Factor Correction Circuit for The Electronic Ballasts with The Series-Load Resonant Inverter,” IEEE Applied Power Electronics Conference, pp. 628-633, 1996.
[43] C. S. Moo, C. R. Lee, and T. F. Lin, “A High Power-Factor DC-Linked Resonant Inverter,” Transactions on Industrial Electronics, Vol. 46, No. 4, pp. 814-819, Aug. 1999.
[44] J. Qian, F. C. Lee, and T. Yamauchi, “New Continuous-Input Current Charge Pump Power-Factor-Correction Electronic Ballast,” IEEE Transactions on Industry applications, Vol. 35, No. 2, pp. 433-441, Jan. 1999.
[45] J. Qian and F. C. Lee “Charge Pump Power-Factor-Correction Technologies Part II: Ballast Applications,” IEEE Transactions on Power Electronics, Vol. 15, No. 1, pp. 130-139, Jan. 1999.
[46] R. de Oliveira Brioschi, and J. L. F. Vieira, "High-Power-Factor Electronic Ballast with Constant DC-Link Voltage," IEEE Transactions on Power Electronics, Vol. 13, No. 6, pp. 1030-1037, Nov. 1998.
[47] R. N. do Pardo, M. F. da Silva, M. Jungbeck, and A. R. Seidel, “Low Cost High-Power-Factor Electronic Ballast for Compact Fluorescent Lamps,” IEEE Industry Applications Society IAS Annual Meeting pp. 256-261, 1999.
[48] C. Blanco, M. Alonso, E. Lopez, A. Calleja, and M.Rico, “A Single-Stage Fluorescent Lamp Ballast with High Power Factor,” IEEE Applied Power Electronic Conference, pp. 616-621, 1996.
[49] T. F. Wu, T. H. Yu, and M. C. Chiang, “Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor,” IEEE Transactions on Power Electronics, Vol. 13, no.3, pp. 586-597, May 1998.
[50] E. Deng and S. Ćuk, “Single-Stage, High Power Factor Lamp Ballast,” IEEE Applied Power Electronic Conference, pp. 441-449, 1994.
[51] C. S. Lin and C. L. Chen, “A Single-Switch Soft-Switching Electronic Ballast with High Input Power Factor,” IEEE International Symposium on Industrial Electronics, pp. 697-702, 1996.
[52] C. Licitral, L. Malesani, G. Spiazzi, P. Tenti, and A. Testa, ”Single-Ended Soft-Switching Electronic Ballast with Unity Power Factor,” IEEE Transactions on Industry Applications, Vol. 29, no. 2, pp. 382-387, March/April 1993.
[53] J. M. Alonso, A. J. Calleja, F. J. Ferrero, E. Lopez, J.Ribas, and M.Rico, “Single-Stage Constant-Wattage High-Power-Factor Electronic Ballast with Dimming Capability,” IEEE Power Electronics Specialists Conference, pp. 2021-20271998.
[54] T. F. Wu and T. H. Yu, “Analysis and Design of a High Power Factor, Single-Stage Electronic Dimming Ballast,” IEEE Transactions on Industry Applications, Vol. 34, no.3, pp. 606-615, May/June 1998.
[55] E. Deng and S. Ćuk, ”Single Switch, Unity Power Factor, Lamp Ballasts,” IEEE Applied Power Electronics Conference, pp. 670-676, 1995.
[56] C. S. Moo, H. L. Cheng and Y. N. Chang, “Single-Stage High-Power-Factor Electronic Ballast with Asymmetrical Pulse-Width -Modulation for Fluorescent Lamps,” IEE Proceedings- Electric Power Applications, Vol.: 148, Issue: 2, pp. 125-132, March 2001.
[57] A. J. Calleja, J. M. Alonso, E. López, J. Ribas, J. A. Martínez, and M. Rico-Secades, “Analysis and Experimental Results of a Single-Stage High-Power-Factor Electronic Ballast Based on Flyback Converter,” IEEE Transactions on Power Electronics, Vol. 14 no. 6, pp.998-1006, Nov. 1999.
[58] R. N. Prado and S. A. Bonaldo, “A High-Power-Factor Electronic Ballast Using a Flyback Push-Pull Integrated Converter,” IEEE Transactions on Industrial Electronics, Vol. 46, no. 4, pp. 796-801, Aug. 1999.
[59] 陳兆雄「整合式單級高功因電子式安定器之調光特性研究」國立雲林科技大學電機工程技術研究所碩士論文,民國八十八年。
[60] P. J. Baxandall, “Transistor Sine-Wave LC Oscillators, Some General Considerations and New Developments,” Proc. IEE, Vol. 106, Pt. B, suppl. 16, pp. 748-758, May 1959.
[61] M. R. Osborne, “Design of Tuned Transistor Power Inverters,” Electron. Eng., Vol. 40, No. 486, pp. 436-443, 1968.
[62] W. J. Chudobiak and D. F. Page, “Frequency and Power Limitations of Class-D Transistor Inverter,” IEEE J. Solid-State Circuits, Vol. Sc-4, pp.25-37, Feb. 1969.
[63] M. Kazimierczuk and J. S. Modzelewski, “Drive-Transformerless Class-D Voltage Switching Tuned Power Inverter,” Proc. IEEE, Vol. 68, pp. 740-741, June 1980.
[64] H. L. Krauss, C. W. Bostian, and F. H. Raab, Solod State Radio Engineering, New York: John Wiley & Sons, Ch. 14.1-2, pp. 432-448, 1980.
[65] F. H. Raab, “Classs-D Power Inverter Load Impedance for Maximum Efficiency,” RF Technology Expo’85 Conf., Anaheim, CA, pp. 287-295, Jan. 23-25, 1985.
[66] M. K. Kazimierczuk, “Class D Voltage-Switching MOSFET Power Inverter,” IEE Proc., Pt. B, Electric Power Appl., Vol. 138, pp. 286-296, Non. 1991.
[67] A. M. Kazimierczuk and W. Szaraniec, “Class D Voltage-Switching Inverter with Only One Shunt Capacitor,” IEE Proc., Pt. B, Electric Power Appl., Vol. 139, pp. 449-456, Sept. 1992.
[68] R. Severns, “Topologies for Three-Element Resonant Converter,” IEEE Transactions on Power Electronics, Vol. 7, No. 1, pp.89-98, Jan. 1992.
[69] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Transactions on Power Electronics, Vol. 8, No. 4, pp.386-395, Oct. 1993.
[70] N. O. Sokal and A. D. Sokal, “A New Class of High-Efficiency Tuned Single-Ended Switching Power Amplifier,” IEEE J. Solid-State Circuits, Vol. SC-10, pp. 168-176, June 1975.
[71] F. H. Raab, “Idealized Operation of the Class E Tuned Power Amplifier,” IEEE Transactions on Circuit System, Vol. CAS-24, pp. 725-735, Dec. 1977.
[72] N. O. Sokal and F. H. Raab, “Harmonic Output of Class E RF Power Amplifiers and Load Coupling Network Design,” IEEE J. Solid-State Circuits, Vol. SC-12, pp. 86-88, Feb. 1977.
[73] M. K. Kazimierczuk and K. Puczko, “Power-Output Capability of Class E Amplifier at any Loaded Q and Switch Duty Cycle,” IEEE Transactions on Circuit System, Vol. CAS-2436, No. 8, pp. 1142-1143, Aug. 1989.
[74] M. K. Kazimierczuk and X. T. Bui, “Class E Amplifier with an Inductive Impedance Inverter,” IEEE Transactions on Industrial Electronics, Vol. IE-37, pp. 160-166, April 1990.
[75] C. S. Moo, Y. C. Chuang, Y. H. Huang, and H. N. Chen, “Modeling of Fluorescent Lamps for Dimmable Electronic Ballasts,” IEEE Industry Applications Society IAS Annual Meeting, pp. 2231-2236, 1996.
[76] M. K. Kazimierczuk, and D. Czarkowski, Resonant Power Converters, New York: Wiley, 1995
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code